October 6, 2024
Applications of mixture methods in epidemiological studies investigating the health impact of persistent organic pollutants exposures: a scoping review
  • El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta. 2010;80:1587–97.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ashraf MA. Persistent organic pollutants (POPs): a global issue, a global challenge. Environ Sci Pollut Res. 2017;24:4223–7.

    Article 

    Google Scholar 

  • Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, et al. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. IJERPH. 2019;16:4361.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Miniero R, Iamiceli AL, De Felip E. Persistent Organic Pollutants. In: Reference Module in Earth Systems and Environmental Sciences. Elsevier; 2015 https://doi.org/10.1016/B978-0-12-409548-9.09496-3.

  • Lallas PL. The Stockholm Convention on Persistent Organic Pollutants. Am J Int Law. 2001;95:692–708.

    Article 

    Google Scholar 

  • Bedi JS, Singh V, Gupta A, Gill JPS, Aulakh RS. Persistent organic pollutants (POPs) in fresh water farm fish species from Punjab (India) and evaluation of their dietary intake for human risk assessment. Hum Ecol Risk Assess: Int J. 2018;24:1659–72.

    Article 
    CAS 

    Google Scholar 

  • Fair PA, White ND, Wolf B, Arnott SA, Kannan K, Karthikraj R, et al. Persistent organic pollutants in fish from Charleston Harbor and tributaries, South Carolina, United States: A risk assessment. Environ Res. 2018;167:598–613.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Harmouche-Karaki M, Mahfouz Y, Salameh P, Matta J, Helou K, Narbonne J-F. Patterns of PCBs and OCPs exposure in a sample of Lebanese adults: The role of diet and physical activity. Environ Res. 2019;179:108789.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen JC, Baumert BO, Li Y, Li Y, Pan S, Robinson S, et al. Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: A systematic review and meta-analysis. Environ Res. 2023;239:117308.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Arrebola JP, Fernández MF, Martin-Olmedo P, Bonde JP, Martín-Rodriguez JL, Expósito J, et al. Historical exposure to persistent organic pollutants and risk of incident hypertension. Environ Res. 2015;138:217–23.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lee Y-M, Jacobs Jr. DR, Lee D-H. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles. Front Endocrinol. 2018;9 https://www.frontiersin.org/articles/10.3389/fendo.2018.00712.

  • Costello E, Rock S, Stratakis N, Eckel SP, Walker DI, Valvi D et al. Exposure to per-and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis. Environ Health Perspect 2022; 130. doi:10.1289/EHP10092.

  • Berghuis SA, Bos AF, Sauer PJJ, Roze E. Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Arch Toxicol 2015; 89: 687–709.

  • Kahn LG, Harley KG, Siegel EL, Zhu Y, Factor-Litvak P, Porucznik CA et al. Persistent organic pollutants and couple fecundability: a systematic review. Human Reproduction Update 2021; 27: 339–366.

  • Mustieles V, Pérez-Carrascosa FM, León J, Lange T, Bonde J-P, Gómez-Peña C, et al. Adipose Tissue Redox Microenvironment as a Potential Link between Persistent Organic Pollutants and the 16-Year Incidence of Non-hormone-Dependent Cancer. Environ Sci Technol. 2021;55:9926–37.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Savitz DA, Hattersley AM. Evaluating Chemical Mixtures in Epidemiological Studies to Inform Regulatory Decisions. Environ Health Perspect. 2023;131:045001.

    Article 
    PubMed 

    Google Scholar 

  • NIEHS. RFA-ES-17-001: Powering Research through Innovative Methods for mixtures in Epidemiology (PRIME) (R01). Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) https://grants.nih.gov/grants/guide/rfa-files/RFA-ES-17-001.html.

  • Wild CP. Complementing the genome with an ‘exposome’: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50.

    Article 
    CAS 

    Google Scholar 

  • Huhn S, Escher BI, Krauss M, Scholz S, Hackermüller J, Altenburger R. Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. Environ Sci Eur. 2021;33:17.

    Article 
    PubMed 

    Google Scholar 

  • Gibson EA, Nunez Y, Abuawad A, Zota AR, Renzetti S, Devick KL, et al. An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length. Environ Health. 2019;18:76.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Joubert BR, Kioumourtzoglou M-A, Chamberlain T, Chen HY, Gennings C, Turyk ME, et al. Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods. Int J Environ Res Public Health. 2022;19:1378.

    Article 
    PubMed 

    Google Scholar 

  • Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16:493–508.

    Article 
    PubMed 

    Google Scholar 

  • Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ Health Perspect. 2020;128:047004.

    Article 
    PubMed 

    Google Scholar 

  • Czarnota J, Gennings C, Wheeler DC. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Inform. 2015;14:159–71.

    PubMed 

    Google Scholar 

  • Braun JM, Gennings C, Hauser R, Webster TF. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ Health Perspect. 2016;124:A6–9 https://doi.org/10.1289/ehp.1510569.

    Article 
    PubMed 

    Google Scholar 

  • Gibson EA, Goldsmith J, Kioumourtzoglou M-A. Complex Mixtures, Complex Analyses: an Emphasis on Interpretable Results. Curr Envir Health Rpt. 2019;6:53–61.

    Article 
    CAS 

    Google Scholar 

  • Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–73.

    Article 
    PubMed 

    Google Scholar 

  • Pan S. Applications of environmental mixture methods on associations with persistent organic pollutants exposures: A scoping review. 2022. Accessed 1 Feb 2024.

  • Listing of POPs in the Stockholm Convention. All POPs listed in the Stockholm Convention, 2019 https://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx.

  • Toxicological Profiles | ATSDR. 2023 Accessed 16 Nov 2023.

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373–D1380.

    Article 
    PubMed 

    Google Scholar 

  • Lazarevic N, Barnett AG, Sly PD, Knibbs LD. Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives. Environ Health Perspect. 2019;127:026001.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Suk WA, Olden K, Yang RSH. Chemical mixtures research: significance and future perspectives. Environ Health Perspect. 2002;110:891–2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicol Sci. 2006;93:223–41.

    Article 
    PubMed 

    Google Scholar 

  • Carlson LM, Christensen K, Sagiv SK, Rajan P, Klocke CR, Lein PJ, et al. A systematic evidence map for the evaluation of noncancer health effects and exposures to polychlorinated biphenyl mixtures. Environ Res. 2023;220:115148.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pelch KE, Reade A, Kwiatkowski CF, Merced-Nieves FM, Cavalier H, Schultz K, et al. The PFAS-Tox Database: A systematic evidence map of health studies on 29 per- and polyfluoroalkyl substances. Environ Int. 2022;167:107408.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Goodrich JA, Walker DI, He J, Lin X, Baumert BO, Hu X et al. Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study. Environ Health Perspect. 2023;131:027005.

  • Hwang BS, Chen Z, M Buck Louis G, Albert PS. A Bayesian multi-dimensional couple-based latent risk model with an application to infertility. Biometrics. 2019;75:315–25.

    Article 
    PubMed 

    Google Scholar 

  • Lazarevic N, Barnett AG, Sly PD, Callan AC, Stasinska A, Heyworth JS, et al. Prenatal exposure to mixtures of persistent environmental chemicals and fetal growth outcomes in Western Australia. Int J Hyg Environ Health. 2022;240:113899.

    Article 
    PubMed 

    Google Scholar 

  • Pearce JL, Neelon B, Bloom MS, Buckley JP, Ananth CV, Perera F, et al. Exploring associations between prenatal exposure to multiple endocrine disruptors and birth weight with exposure continuum mapping. Environ Res. 2021;200:111386 https://doi.org/10.1016/j.envres.2021.111386.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Varona-Uribe ME, Torres-Rey CH, Díaz-Criollo S, Palma-Parra RM, Narváez DM, Carmona SP, et al. Exposure to pesticide mixtures and DNA damage among rice field workers. Arch Environ Occup Health. 2016;71:3–9.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Roberts EK, Boss J, Mukherjee B, Salerno S, Zota A, Needham BL. Persistent organic pollutant exposure contributes to Black/White differences in leukocyte telomere length in the National Health and Nutrition Examination Survey. Sci Rep. 2022;12:19960.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang B, Chen Z, Albert PS. Latent class models for joint analysis of disease prevalence and high-dimensional semicontinuous biomarker data. Biostatistics. 2012;13:74–88.

    Article 
    PubMed 

    Google Scholar 

  • Yonkman AM, Alampi JD, Kaida A, Allen RW, Chen A, Lanphear BP, et al. Using Latent Profile Analysis to Identify Associations Between Gestational Chemical Mixtures and Child Neurodevelopment. Epidemiology. 2023;34:45–55.

    Article 
    PubMed 

    Google Scholar 

  • Vuong AM, Xie C, Jandarov R, Dietrich KN, Zhang H, Sjödin A, et al. Prenatal Exposure to a Mixture of Persistent Organic Pollutants (POPs) and Child Reading Skills at School Age. Int J Hyg Environ Health. 2020;228:113527.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Oulhote Y, Coull B, Bind M-A, Debes F, Nielsen F, Tamayo I, et al. Joint and independent neurotoxic effects of early life exposures to a chemical mixture: A multi-pollutant approach combining ensemble learning and G-computation. Environ Epidemiol. 2019;3:e063 https://doi.org/10.1097/EE9.0000000000000063.

    Article 
    PubMed 

    Google Scholar 

  • Maitre L, Jedynak P, Gallego M, Ciaran L, Audouze K, Casas M, et al. Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review. Environ Res. 2023;228:115788.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu SH, Chen Y, Kuiper JR, Ho E, Buckley JP, Feuerstahler L. Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions. Stat Biosci. 2024;16:482–502.

    Article 

    Google Scholar 

  • Ding N, Harlow SD, Randolph JF, Calafat AM, Mukherjee B, Batterman S, et al. Associations of Perfluoroalkyl Substances with Incident Natural Menopause: The Study of Women’s Health across the Nation. J Clin Endocrinol Metab. 2020;105:E3169–E3182.

    Article 
    PubMed 

    Google Scholar 

  • Kim S, Cho YH, Lee I, Kim W, Won S, Ku J-L, et al. Prenatal exposure to persistent organic pollutants and methylation of LINE-1 and imprinted genes in placenta: A CHECK cohort study. Environ Int. 2018;119:398–406.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim S, Cho YH, Won S, Ku J-L, Moon H-B, Park J, et al. Maternal exposures to persistent organic pollutants are associated with DNA methylation of thyroid hormone-related genes in placenta differently by infant sex. Environ Int. 2019;130:104956 https://doi.org/10.1016/j.envint.2019.104956.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Romano ME, et al. Exposures to chemical mixtures during pregnancy and neonatal outcomes: The HOME study. Environ Int. 2020;134:105219 https://doi.org/10.1016/j.envint.2019.105219.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Sullivan AJ, et al. Chemical mixture exposures during pregnancy and cognitive abilities in school-aged children. Environ Res. 2021;197:111027 https://doi.org/10.1016/j.envres.2021.111027.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Oppenheimer AV, Bellinger DC, Coull BA, Weisskopf MG, Korrick SA. Prenatal exposure to chemical mixtures and cognitive flexibility among adolescents. Toxics. 2021;9:329 https://doi.org/10.3390/toxics9120329.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Oppenheimer AV, Bellinger DC, Coull BA, Weisskopf MG, Zemplenyi M, Korrick SA. Prenatal exposure to chemical mixtures and inhibition among adolescents. Toxics. 2021;9:329 https://doi.org/10.3390/toxics9110311.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Oppenheimer AV, Bellinger DC, Coull BA, Weisskopf MG, Korrick SA. Prenatal exposure to chemical mixtures and working memory among adolescents. Environ Res. 2022;205:112436 https://doi.org/10.1016/j.envres.2021.112436.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rokoff LB, Coull BA, Bosquet Enlow M, Korrick SA. Associations of Prenatal Chemical and Nonchemical Stressors with Early-Adulthood Anxiety and Depressive Symptoms. Environ Health Perspect. 2023;131:027004.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Govarts E, Remy S, Bruckers L, Den Hond E, Sioen I, Nelen V, et al. Combined effects of prenatal exposures to environmental chemicals on birth weight. Int J Environ Res Public Health. 2016;13:495 https://doi.org/10.3390/ijerph13050495.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kupsco A, Lee JJ, Prada D, Valvi D, Hu L, Petersen MS, et al. Marine pollutant exposures and human milk extracellular vesicle-microRNAs in a mother-infant cohort from the Faroe Islands. Environ Int. 2022;158:106986 https://doi.org/10.1016/j.envint.2021.106986.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tanner EM, Hallerbäck MU, Wikström S, Lindh C, Kiviranta H, Gennings C, et al. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. Environ Int. 2020;134:105185 https://doi.org/10.1016/j.envint.2019.105185.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Svensson K, Tanner E, Gennings C, Lindh C, Kiviranta H, Wikström S, et al. Prenatal exposures to mixtures of endocrine disrupting chemicals and children’s weight trajectory up to age 5.5 in the SELMA study. Sci Rep. 2021;11:11036.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Berg V, Nøst TH, Pettersen RD, Hansen S, Veyhe A-S, Jorde R, et al. Persistent organic pollutants and the association with maternal and infant thyroid homeostasis: A multipollutant assessment. Environ Health Perspect. 2017;125:127–33.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pavuk M, Rosenbaum PF, Lewin MD, Serio TC, Rago P, Cave MC, et al. Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, pesticides, and diabetes in the Anniston Community Health Survey follow-up (ACHS II): single exposure and mixture analysis approaches. Sci Total Environ. 2023;877:162920.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang Z, Zhang C, Williams PL, Bellavia A, Wylie BJ, Hacker MR, et al. Polybrominated diphenyl ethers in early pregnancy and preterm birth: Findings from the NICHD Fetal Growth Studies. Int J Hyg Environ Health. 2022;243:113978.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wu B, Pan Y, Li Z, Wang J, Ji S, Zhao F, et al. Serum per- and polyfluoroalkyl substances and abnormal lipid metabolism: A nationally representative cross-sectional study. Environ Int. 2023;172:107779.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Grandjean P, Budtz‐Jørgensen E. Total imprecision of exposure biomarkers: implications for calculating exposure limits. Am J Ind Med. 2007;50:712–9.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, DeWitt JC, Knappe DRU, et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ Sci Technol Lett. 2020;7:532–43.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eick SM, Barr DB, Brennan PA, Taibl KR, Tan Y, Robinson M, et al. Per- and polyfluoroalkyl substances and psychosocial stressors have a joint effect on adverse pregnancy outcomes in the Atlanta African American Maternal-Child cohort. Sci Total Environ. 2023;857:159450.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eick SM, Enright EA, Padula AM, Aung M, Geiger SD, Cushing L et al. Prenatal PFAS and psychosocial stress exposures in relation to fetal growth in two pregnancy cohorts: Applying environmental mixture methods to chemical and non-chemical stressors. Environ Int 2022;163. https://doi.org/10.1016/j.envint.2022.107238.

  • Maitre L, Guimbaud J-B, Warembourg C, Güil-Oumrait N, Petrone PM, Chadeau-Hyam M, et al. State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event. Environ Int. 2022;168:107422.

    Article 
    PubMed 

    Google Scholar 

  • Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, et al. The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20–40 Months of Age: Evidence from Rural Bangladesh. Environ Health Perspect. 2017;125:067015.

    Article 
    PubMed 

    Google Scholar 

  • Rosato I, Zare Jeddi M, Ledda C, Gallo E, Fletcher T, Pitter G, et al. How to investigate human health effects related to exposure to mixtures of per- and polyfluoroalkyl substances: A systematic review of statistical methods. Environ Res. 2022;205:112565.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wheeler DC, Rustom S, Carli M, Whitehead TP, Ward MH, Metayer C. Bayesian group index regression for modeling chemical mixtures and cancer risk. Int J Environ Res Public Health. 2021;18:3486 https://doi.org/10.3390/ijerph18073486.

    Article 
    PubMed 

    Google Scholar 

  • Wheeler DC, Rustom S, Carli M, Metayer C, Whitehead TP, Ward MH. Assessment of grouped weighted quantile sum regression for modeling chemical mixtures and cancer risk. Int J Environ Res Public Health. 2021;18:1–20.

    Google Scholar 

  • Bellavia A 5.1 Bayesian Kernel Machine Regression | Statistical Methods for Environmental Mixtures, 2023 https://bookdown.org/andreabellavia/mixtures/bayesian-kernel-machine-regression.html.

  • Midya V, Alcala CS, Rechtman E, Gregory JK, Kannan K, Hertz-Picciotto I, et al. Machine Learning Assisted Discovery of Interactions between Pesticides, Phthalates, Phenols, and Trace Elements in Child Neurodevelopment. Environ Sci Technol. 2023;57:18139–50.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Könemann WH, Pieters MN. Confusion of concepts in mixture toxicology. Food Chem Toxicol. 1996;34:1025–31.

    Article 
    PubMed 

    Google Scholar 

  • Gennings C, Carter WH, Campain JA, Bae D, Yang RSH. Statistical analysis of interactive cytotoxicity in human epidermal keratinocytes following exposure to a mixture of four metals. JABES. 2002;7:58–73.

    Article 

    Google Scholar 

  • Bellavia A, James-Todd T, Williams PL. Approaches for incorporating environmental mixtures as mediators in mediation analysis. Environ Int. 2019;123:368–74.

    Article 
    PubMed 

    Google Scholar 

  • Yu L, Liu W, Wang X, Ye Z, Tan Q, Qiu W, et al. A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture. Environ Pollut. 2022;306:119356.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bellavia A, Dickerson AS, Rotem RS, Hansen J, Gredal O, Weisskopf MG. Joint and interactive effects between health comorbidities and environmental exposures in predicting amyotrophic lateral sclerosis. Int J Hyg Environ Health. 2021;231:113655.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bellavia A. 5.2 Assessing interactions | Statistical Methods for Environmental Mixtures, 2023 https://bookdown.org/andreabellavia/mixtures/assessing-interactions.html.

  • Gao Y, Luo J, Zhang Y, Pan C, Ren Y, Zhang J et al. Prenatal Exposure to Per-and Polyfluoroalkyl Substances and Child Growth Trajectories in the First Two Years. Environ Health Perspect 2022;130. https://doi.org/10.1289/EHP9875.

  • Padula AM, Ning X, Bakre S, Barrett ES, Bastain T, Bennett DH et al. Birth Outcomes in Relation to Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Stress in the Environmental Influences on Child Health Outcomes (ECHO) Program. Environ Health Perspect 2023; 131: 037006.

  • Wang H, Li W, Yang J, Wang Y, Du H, Han M, et al. Gestational exposure to perfluoroalkyl substances is associated with placental DNA methylation and birth size. Sci Total Environ. 2023;858:159747.

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. Perfluoroalkyl Mixture Exposure in Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations with Birth Outcomes. Toxics 2022;10:650.

  • Song X, Wu J, Ji H, Liang H, Chen Y, Yang L et al. Maternal per- and poly-fluoroalkyl substances exposure and child adiposity measures: A birth cohort study. Ecotoxicology and Environmental Safety 2023;253:114684.

  • Hu JMY, Arbuckle TE, Janssen P, Lanphear BP, Zhuang LH, Braun JM et al. Prenatal exposure to endocrine disrupting chemical mixtures and infant birth weight: A Bayesian analysis using kernel machine regression. Environmental Research 2021;195:110749.

  • Wang Z, Zhang J, Dai Y, Zhang L, Guo J, Xu S, et al. Mediating effect of endocrine hormones on association between per- and polyfluoroalkyl substances exposure and birth size: Findings from sheyang mini birth cohort study. Environ Res. 2023;226:1156580.

    Article 

    Google Scholar 

  • Luo D, Wu W, Pan Y, Du B, Shen M, Zeng L. Associations of Prenatal Exposure to Per- and Polyfluoroalkyl Substances with the Neonatal Birth Size and Hormones in the Growth Hormone/Insulin-Like Growth Factor Axis. Environ Sci Technol 2021;55:11859–73.

  • Marks KJ, Howards PP, Smarr MM, Flanders WD, Northstone K, Daniel JH et al. Prenatal Exposure to Mixtures of Persistent Endocrine-disrupting Chemicals and Birth Size in a Population-based Cohort of British Girls. Epidemiology 2021;32:573–82.

  • Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Romano ME et al. Exposures to chemical mixtures during pregnancy and neonatal outcomes: The HOME study. Environ Int 2020;134. https://doi.org/10.1016/j.envint.2019.105219.

  • Zhuang LH, Chen A, Braun JM, Lanphear BP, Hu JMY, Yolton K et al. Effects of gestational exposures to chemical mixtures on birth weight using Bayesian factor analysis in the Health Outcome and Measures of Environment (HOME) Study. Environ Epidemiology 2021. https://doi.org/10.1097/EE9.0000000000000159.

  • Eick SM, Tan Y, Taibl KR, Barry Ryan P, Barr DB, Hüls A et al. Prenatal exposure to persistent and non-persistent chemical mixtures and associations with adverse birth outcomes in the Atlanta African American Maternal-Child Cohort. J Expo Sci Environ Epidemiol. 2023

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *