January 21, 2025
Daily steps, cardiorespiratory fitness, and remnant cholesterol in schoolchildren: mediation effects for cardiovascular prevention
  • Roeters Van Lennep, J. E. et al. Women, lipids, and atherosclerotic cardiovascular disease: a call to action from the European Atherosclerosis Society. Eur. Heart J. 44, 4157–4173 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, Y. M. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ. J. 40, 1–9 (2010).

  • Napoli, C. et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J. Clin. Invest 100, 2680–2690 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Napoli, C. et al. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: fate of Early Lesions in Children (FELIC) study. Lancet 354, 1234–1241 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pool, L. R. et al. Childhood risk factors and adulthood cardiovascular disease: a systematic review. J. Pediatr. 232, 118–126.e23 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobs, D. R. et al. Childhood cardiovascular risk factors and adult cardiovascular events. N. Engl. J. Med. 386, 1877–1888 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Twisk, J. W. R., Kemper, H. C. G. & Van Mechelen, W. Tracking of activity and fitness and the relationship with cardiovascular disease risk factors. Med. Sci. Sports Exerc. 32, 1455–1461 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martínez-Vizcaíno, V. & Sánchez-López, M. Relationship between physical activity and physical fitness in children and adolescents. Rev. Esp. Cardiol. 61, 108–111 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Nagata, J. M. et al. Physical activity from young adulthood to middle age and premature cardiovascular disease events: a 30-year population-based cohort study. Int. J. Behav. Nutr. Phys. Act. 19, 123 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kraus, W. E. et al. Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med. Sci. Sports Exerc. 51, 1270–1281 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. & Peng, D. Residual atherosclerotic cardiovascular disease risk: focus on non-high-density lipoprotein cholesterol. J. Cardiovasc. Pharmacol. Ther. 28, (2023)

  • Crea, F. High-density lipoproteins, lipoprotein(a), and remnant cholesterol: new opportunities for reducing residual cardiovascular risk. Eur. Heart J. 44, 1379–1382 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Varbo, A. & Nordestgaard, B. G. Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 36, 2133–2135 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baratta, F. et al. Cholesterol remnants, triglyceride-rich lipoproteins and cardiovascular risk. Int. J. Mol. Sci. 24, 4268 (2023).

  • Delialis, D. et al. Remnant cholesterol and atherosclerotic disease in high cardiovascular risk patients. Beyond LDL cholesterol and hypolipidemic treatment. Hellenic J. Cardiol. 66, 26–31 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kondamudi, N., Mehta, A., Thangada, N. D. & Pandey, A. Physical activity and cardiorespiratory fitness: vital signs for cardiovascular risk assessment. Curr. Cardiol. Rep. 23, 172 (2021).

  • Mozaffarian, D. et al. Heart Disease and Stroke Statistics-2016 Update: a report from the American Heart Association. Circulation 133, e38–e48 (2016).

    PubMed 

    Google Scholar 

  • WHO. Global status report on physical activity 2022: executive summary (2022).

  • Casado-Robles, C., Viciana, J., Guijarro-Romero, S. & Mayorga-Vega D. Effects of consumer-wearable activity tracker-based programs on objectively measured daily physical activity and sedentary behavior among school-aged children: a systematic review and meta-analysis. Sports Med. Open 8, 18 (2022).

  • Pozuelo-Carrascosa, D. P., García-Hermoso, A., Álvarez-Bueno, C., Sánchez-López, M. & Martinez-Vizcaino, V. Effectiveness of school-based physical activity programmes on cardiorespiratory fitness in children: a meta-analysis of randomised controlled trials. Br. J. Sports Med. 52, 1234–1240 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Mayorga-Vega, D., Casado-Robles, C., López-Fernández, I. & Viciana, J. A comparison of the utility of different step-indices to translate the physical activity recommendation in adolescents. J. Sports Sci. 39, 469–479 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ross, R. et al. Precision exercise medicine: understanding exercise response variability. Br. J. Sports Med. 53, 1141–1153 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rodríguez-Gutiérrez, E. et al. Steps per day and health-related quality of life in schoolchildren: the mediator role of cardiorespiratory fitness. Eur. J. Pediatr. 183, 739–748 (2024).

  • Paluch, A. E. et al. Prospective association of daily steps with cardiovascular disease: a harmonized meta-analysis. Circulation 147, 122–131 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Banach, M. et al. The association between daily step count and all-cause and cardiovascular mortality: a meta-analysis. Eur. J. Prev. Cardiol. 18, 1975–1985 (2023).

  • Stens, N. A. et al. Relationship of daily step counts to all-cause mortality and cardiovascular events. J. Am. Coll. Cardiol. 15, 1483–1494 (2023).

  • Sheng, M. et al. The relationships between step count and all-cause mortality and cardiovascular events: a dose-response meta-analysis. J. Sport Health Sci. 10, 620–628 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Gutiérrez, E. et al. Daily steps and all-cause mortality: an umbrella review and meta-analysis. Prev. Med. 185, 108047 (2024).

  • Ramírez-Vélez, R. et al. Cardiorespiratory fitness, adiposity, and cardiometabolic risk factors in schoolchildren: the FUPRECOL study. West. J. Nurs. Res. 39, 1311–1329 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sequí-Domínguez, I. et al. Association of daily steps on lipid and glycaemic profiles in children: the mediator role of cardiorespiratory fitness. Acta Paediatr. 113, 296–302 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Reyes-Ferrada, W. et al. Cardiorespiratory fitness, physical activity, sedentary time and its association with the atherogenic index of plasma in Chilean adults: influence of the waist circumference to height ratio. Nutrients 12, 1250 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muscella, A., Stefàno, E. & Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Heart Circ. Physiol. 319, H76–H88 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packard, C. J. Remnants, LDL, and the quantification of lipoprotein-associated risk in atherosclerotic cardiovascular disease. Curr. Atheroscler. Rep. 24, 133–142 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).

  • Casado-Robles, C., Mayorga-Vega, D., Guijarro-Romero, S. & Viciana, J. Validity of the Xiaomi Mi Band 2, 3, 4 and 5 wristbands for assessing physical activity in 12-to-18-year-old adolescents under unstructured free-living conditions. fit-person study. J. Sports Sci. Med. 22, 196 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sajja, A. et al. Discordance between standard equations for determination of LDL cholesterol in patients with atherosclerosis. J. Am. Coll. Cardiol. 79, 530–541 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, S. S. et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 310, 2061–2068 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Léger, L., Lambert, J., Goulet, A., Rowan, C. & Dinelle, Y. Aerobic capacity of 6 to 17-year-old Quebecois-20 meter shuttle run test with 1 min stages. Can. J. Appl. Sport Sci. 9, 64–69 (1984).

    PubMed 

    Google Scholar 

  • Léger, L. A., Mercier, D., Gadoury, C. & Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 6, 93–101 (1988).

    Article 
    PubMed 

    Google Scholar 

  • José de Menezes, F., Correa de Jesus, Í. & Leite, N. Predictive equations of maximum oxygen consumption by shuttle run test in children and adolescents: a systematic review. Rev. Paul. de. Pediatr. 37, 241 (2019).

    Article 

    Google Scholar 

  • Textor, J., van der Zander, B., Gilthorpe, M. S., Liśkiewicz, M. & Ellison, G. T. Robust causal inference using directed acyclic graphs: the R package “dagitty. Int. J. Epidemiol. 45, 1887–1894 (2016).

    PubMed 

    Google Scholar 

  • Bolin, J. H. & Hayes, A. F. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York, NY: The Guilford Press. J. Educ. Meas. 51, 335–337 (2014).

    Article 

    Google Scholar 

  • Hayes A. F. Introduction to Mediation, Moderation, and Conditional Process Analysis: a Regression-based Approach. 2nd edn (New York: The Guilford Press, 2018).

  • Sterne, J. A. C. et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, 157–160 (2009).

    Article 

    Google Scholar 

  • Di Costanzo, A. et al. Elevated serum concentrations of remnant cholesterol associate with increased carotid intima-media thickness in children and adolescents. J. Pediatr. 232, 133–139.e1 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Navarese, E. P. et al. Independent causal effect of remnant cholesterol on atherosclerotic cardiovascular outcomes: a mendelian randomization study. Arterioscler. Thromb. Vasc. Biol. 43, e373–e380 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hauser, C. et al. Cardiorespiratory fitness and development of childhood cardiovascular risk: the EXAMIN YOUTH follow-up study. Front. Physiol. 14, 1243434 (2023).

  • Diaz, E. C. et al. Cardiorespiratory fitness associates with blood pressure and metabolic health of children-the Arkansas active kids study. Med. Sci. Sports Exerc. 53, 2225–2232 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isath, A. et al. Exercise and cardiovascular health: a state-of-the-art review. Prog. Cardiovasc. Dis. 79, 44–52 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tucker, W. J. et al. Exercise for primary and secondary prevention of cardiovascular disease: JACC focus seminar 1/4. J. Am. Coll. Cardiol. 80, 1091–1106 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bonikowske, A. R. et al. Evaluating current assessment techniques of cardiorespiratory fitness. Expert Rev. Cardiovasc. Ther. 22, 231–241 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodman, E., Dolan, L. M., Morrison, J. A. & Daniels, S. R. Factor analysis of clustered cardiovascular risks in adolescence: obesity is the predominant correlate of risk among youth. Circulation 111, 1970–1977 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Wei, D. et al. Lipoprotein profiles of fat distribution and its association with insulin sensitivity. Front Endocrinol. 13, 978745 (2022).

    Article 

    Google Scholar 

  • Koskinas, K. C. et al. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur. Heart J. 45, 4063–4098 (2024).

  • Perez-Bey, A. et al. Bidirectional associations between fitness and fatness in youth: a longitudinal study. Scand. J. Med. Sci. Sports 30, 1483–1496 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lavie, C. J., Neeland, I. J. & Ortega, F. B. Intervention in school-aged children to prevent progression of obesity and cardiometabolic disease: a paradigm shift indeed. J. Am. Coll. Cardiol. 84, 509–511 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Santos-Beneit, G. et al. Effect of time-varying exposure to school-based health promotion on adiposity in childhood. J. Am. Coll. Cardiol. 84, 499–508 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Maffeis, C. Physical activity in the prevention and treatment of childhood obesity: physio-pathologic evidence and promising experiences. Int. J. Pediatr. Obes. 3, 29–32 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Aadland, E., Kvalheim, O. M., Anderssen, S. A., Resaland, G. K. & Andersen L. B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 15, 106266 (2018).

  • Haapala, E. A. et al. Cardiorespiratory fitness, physical activity, and insulin resistance in children. Med. Sci. Sports Exerc. 52, 1144–1152 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haapala, E. A. et al. Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children. Eur. J. Sport Sci. 22, 906–915 (2022).

    Article 
    PubMed 

    Google Scholar 

  • González-Gil, E. M. et al. Improving cardiorespiratory fitness protects against inflammation in children: the IDEFICS study. Pediatr. Res. 91, 681–689 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chung, S. T. et al. The relationship between lipoproteins and insulin sensitivity in youth with obesity and abnormal glucose tolerance. J. Clin. Endocrinol. Metab. 107, 1541–1551 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montes-de-Oca-García, A. et al. Maximal fat oxidation capacity is associated with cardiometabolic risk factors in healthy young adults. Eur. J. Sport Sci. 21, 907–917 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Varbo, A., Benn, M., Tybjærg-Hansen, A. & Nordestgaard, B. G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128, 1298–1309 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cesa, C. C. et al. Physical activity and cardiovascular risk factors in children: meta-analysis of randomized clinical trials. Prev. Med. 69, 54–62 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Nordestgaard, B. G. & Varbo, A. Triglycerides and cardiovascular disease. Lancet 384, 626–635 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *