July 15, 2025
Deep learning based approaches for intelligent industrial machinery health management and fault diagnosis in resource-constrained environments
  • Zhang, X., Zhao, B. & Lin, Y. Machine learning based bearing fault diagnosis using the case western reserve university data: A review. IEEE Access 9, 155598–155608 (2021).

    Article 

    Google Scholar 

  • Meng, Z., Cui, Z., Liu, J., Li, J. & Fan, F. Maximum cyclic gini index deconvolution for rolling bearing fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Tang, X., Xu, Z. & Wang, Z. A novel fault diagnosis method of rolling bearing based on integrated vision transformer model. Sensors 22(10), 3878 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shenfield, A. & Howarth, M. A novel deep learning model for the detection and identification of rolling element-bearing faults. Sensors 20(18), 5112 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Qi, B., Li, Y., Yao, W. & Li, Z. Application of emd combined with deep learning and knowledge graph in bearing fault. J. Signal Process. Syst. 1, 1–20 (2023).

    MATH 

    Google Scholar 

  • Jin, Y., Hou, L. & Chen, Y. A time series transformer based method for the rotating machinery fault diagnosis. Neurocomputing 494, 379–395 (2022).

    Article 
    MATH 

    Google Scholar 

  • Han, T., Pang, J. & Tan, A. C. Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network. J. Manuf. Syst. 61, 576–591 (2021).

    Article 
    MATH 

    Google Scholar 

  • Zhang, J., Chen, J., Deng, H. & Hu, W. A novel framework based on adaptive multi-task learning for bearing fault diagnosis. Energy Rep. 9, 522–531 (2023).

    Article 
    MATH 

    Google Scholar 

  • Ghorvei, M., Kavianpour, M., Beheshti, M. T. & Ramezani, A. Synthetic to real framework based on convolutional multi-head attention and hybrid domain alignment. In 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA) 1–6 (IEEE, 2022).

  • Rajput, D. S., Meena, G., Acharya, M. & Mohbey, K. K. Fault prediction using fuzzy convolution neural network on iot environment with heterogeneous sensing data fusion. Meas. Sens. 26, 100701 (2023).

    Article 

    Google Scholar 

  • Hou, Y., Wang, J., Chen, Z., Ma, J. & Li, T. Diagnosisformer: An efficient rolling bearing fault diagnosis method based on improved transformer. Eng. Appl. Artif. Intell. 124, 106507 (2023).

    Article 

    Google Scholar 

  • Yang, D., Karimi, H. R. & Gelman, L. An explainable intelligence fault diagnosis framework for rotating machinery. Neurocomputing 541, 126257 (2023).

    Article 

    Google Scholar 

  • Magar, R., Ghule, L., Li, J., Zhao, Y. & Farimani, A. B. Faultnet: A deep convolutional neural network for bearing fault classification. IEEE Access 9, 25189–25199 (2021).

    Article 

    Google Scholar 

  • Wang, H., Zhang, W., Yang, D. & Xiang, Y. Deep-learning-enabled predictive maintenance in industrial internet of things: Methods, applications, and challenges. IEEE Syst. J. 17, 2602 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Alonso-González, M. et al. Bearing fault diagnosis with envelope analysis and machine learning approaches using cwru dataset. IEEE Access 11, 57796 (2023).

    Article 
    MATH 

    Google Scholar 

  • Tang, L., Wu, X., Wang, D. & Liu, X. A comparative experimental study of vibration and acoustic emission on fault diagnosis of low-speed bearing. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Cateni, S. et al. Variable selection through genetic algorithms for classification purposes. In Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Applications, vol. 1, 6–11 (AIA, 2010)

  • Heinze, G., Wallisch, C. & Dunkler, D. Variable selection—A review and recommendations for the practicing statistician. Biom. J. 60, 431. (2018).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tang, G., Hu, H., Kong, J. & Liu, H. A novel fault feature selection and diagnosis method for rotating machinery with symmetrized dot pattern representation. IEEE Sens. J. 23(2), 1447–1461 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Lee, C.-Y., Le, T.-A. & Hung, C.-L. A feature selection approach based on memory space computation genetic algorithm applied in bearing fault diagnosis model. IEEE Access 11, 51282 (2023).

    Article 
    MATH 

    Google Scholar 

  • Yang, Y., Liu, H., Han, L. & Gao, P. A feature extraction method using vmd and improved envelope spectrum entropy for rolling bearing fault diagnosis. IEEE Sens. J. 23(4), 3848–3858 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Gu, J., Peng, Y., Lu, H., Chang, X. & Chen, G. A novel fault diagnosis method of rotating machinery via vmd, cwt and improved cnn. Measurement 200, 111635 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhao, Y., Zhang, N., Zhang, Z. & Xu, X. Bearing fault diagnosis based on mel frequency cepstrum coefficient and deformable space-frequency attention network. IEEE Access 11, 34407–34420 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhou, C. et al. A mechanical part fault diagnosis method based on improved multiscale weighted permutation entropy and multiclass lstsvm. Measurement 214, 112671 (2023).

    Article 
    MATH 

    Google Scholar 

  • Kulevome, D. K. B., Wang, H. & Wang, X. Rolling bearing fault diagnostics based on improved data augmentation and convnet. J. Syst. Eng. Electron. 34(4), 1074–1084 (2023).

    Article 
    MATH 

    Google Scholar 

  • Liu, X., Sun, W., Li, H., Wang, Z. & Li, Q. Imbalanced sample fault diagnosis of rolling bearing using deep condition multidomain generative adversarial network. IEEE Sens. J. 23(2), 1271–1285 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Huo, J., Qi, C., Li, C. & Wang, N. Data augmentation fault diagnosis method based on residual mixed self-attention for rolling bearings under imbalanced samples. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Tong, J., Liu, C., Bao, J., Pan, H. & Zheng, J. A novel ensemble learning-based multisensor information fusion method for rolling bearing fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1–12 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhou, H. et al. Hob vibration signal denoising and effective features enhancing using improved complete ensemble empirical mode decomposition with adaptive noise and fuzzy rough sets. Expert Syst. Appl. 233, 120989 (2023).

    Article 
    MATH 

    Google Scholar 

  • Xiong, J. et al. A bearing fault diagnosis method based on improved mutual dimensionless and deep learning. IEEE Sens. J. 23(16), 18338 (2023).

    Article 
    ADS 

    Google Scholar 

  • Yu, W., Pi, D., Xie, L. & Luo, Y. Multiscale attentional residual neural network framework for remaining useful life prediction of bearings. Measurement 177, 109310 (2021).

    Article 
    MATH 

    Google Scholar 

  • Hosna, A. et al. Transfer learning: A friendly introduction. J. Big Data 9(1), 102 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhu, W., Shi, B., Feng, Z. & Tang, J. An unsupervised domain adaptation method for intelligent bearing fault diagnosis based on signal reconstruction by cycle-consistent adversarial learning. IEEE Sens. J. 1, 1 (2023).

    Google Scholar 

  • Zhu, W., Shi, B. & Feng, Z. A transfer learning method using high-quality pseudo labels for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1–11 (2022).

    MATH 

    Google Scholar 

  • Yu, X. et al. A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions. Measurement 201, 111597 (2022).

    Article 
    MATH 

    Google Scholar 

  • Ayodeji, A. et al. Causal augmented convnet: A temporal memory dilated convolution model for long-sequence time series prediction. ISA Trans. 123, 200–217 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, S., Chen, J., He, S., Shi, Z. & Zhou, Z. Few-shot learning under domain shift: Attentional contrastive calibrated transformer of time series for fault diagnosis under sharp speed variation. Mech. Syst. Signal Process. 189, 110071 (2023).

    Article 

    Google Scholar 

  • Yu, X. et al. A new cross-domain bearing fault diagnosis framework based on transferable features and manifold embedded discriminative distribution adaption under class imbalance. IEEE Sens. J. 23(7), 7525–7545 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Gao, H., Zhang, X., Gao, X., Li, F. & Han, H. Icot-gan: Integrated convolutional transformer gan for rolling bearings fault diagnosis under limited data condition. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Luo, P., Yin, Z., Yuan, D., Gao, F. & Liu, J. An intelligent method for early motor bearing fault diagnosis based on Wasserstein distance generative adversarial networks meta learning. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Ren, Z., Ji, J., Zhu, Y., Hong, J. & Feng, K. Generative adversarial network with dual multi-scale feature fusion for data augmentation in fault diagnosis. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Lu, Z., Cai, Z., Qian, W. & Zhou, D. Intelligent fault diagnosis of bearings with both working condition variation and target data scarcity. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Azari, M. S., Flammini, F., Santini, S. & Caporuscio, M. A systematic literature review on transfer learning for predictive maintenance in industry 4.0. IEEE Access 11, 12887 (2023).

    Article 
    MATH 

    Google Scholar 

  • Castano, F., Cruz, Y. J., Villalonga, A. & Haber, R. E. Data-driven insights on time-to-failure of electromechanical manufacturing devices: A procedure and case study. IEEE Trans. Ind. Inform. 19, 7190 (2022).

    Article 
    MATH 

    Google Scholar 

  • Mao, W., Chen, J., Liu, J. & Liang, X. Self-supervised deep domain-adversarial regression adaptation for online remaining useful life prediction of rolling bearing under unknown working condition. IEEE Trans. Ind. Inf. 19(2), 1227–1237 (2022).

    Article 
    MATH 

    Google Scholar 

  • Ni, Q., Ji, J. & Feng, K. Data-driven prognostic scheme for bearings based on a novel health indicator and gated recurrent unit network. IEEE Trans. Ind. Inf. 19(2), 1301–1311 (2022).

    Article 
    MATH 

    Google Scholar 

  • Gao, H., Li, Y., Zhao, Y. & Song, Y. Dual channel feature-attention-based approach for rul prediction considering the spatiotemporal difference of multisensor data. IEEE Sens. J. 23, 8514 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yu, W., Liu, Y., Dillon, T. & Rahayu, W. Edge computing-assisted iot framework with an autoencoder for fault detection in manufacturing predictive maintenance. IEEE Trans. Ind. Inf. 19(4), 5701–5710 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhao, C., Tang, B., Huang, Y. & Deng, L. Edge collaborative compressed sensing in wireless sensor networks for mechanical vibration monitoring. IEEE Trans. Ind. Inform. 19, 8852 (2022).

    Article 
    MATH 

    Google Scholar 

  • Asutkar, S., Chalke, C., Shivgan, K. & Tallur, S. Tinyml-enabled edge implementation of transfer learning framework for domain generalization in machine fault diagnosis. Expert Syst. Appl. 213, 119016 (2023).

    Article 

    Google Scholar 

  • Kamath, V. & Renuka, A. Deep learning based object detection for resource constrained devices: Systematic review, future trends and challenges ahead. Neurocomputing 531, 34–60. (2023).

    Article 
    MATH 

    Google Scholar 

  • Gutierrez-Torre, A. et al. Automatic distributed deep learning using resource-constrained edge devices. IEEE Internet Things J. 9(16), 15018–15029. (2022).

    Article 

    Google Scholar 

  • Ren, Z. et al. A systematic review on imbalanced learning methods in intelligent fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Zhang, Q., Yuan, R., Lv, Y., Li, Z. & Wu, H. Multivariate dynamic mode decomposition and its application to bearing fault diagnosis. IEEE Sens. J. 23(7), 7514–7524 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Niu, G., Liu, E., Wang, X., Ziehl, P. & Zhang, B. Enhanced discriminate feature learning deep residual cnn for multitask bearing fault diagnosis with information fusion. IEEE Trans. Ind. Inf. 19(1), 762–770 (2022).

    Article 
    MATH 

    Google Scholar 

  • Brusamarello, B., Silva, J. C. C., Morais Sousa, K. & Guarneri, G. A. Bearing fault detection in three-phase induction motors using support vector machine and fiber Bragg grating. IEEE Sens. J. 23(5), 4413–4421 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Liu, D., Cui, L. & Cheng, W. Flexible generalized demodulation for intelligent bearing fault diagnosis under nonstationary conditions. IEEE Trans. Ind. Inf. 19(3), 2717–2728 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zhang, X. et al. Inferable deep distilled attention network for diagnosing multiple motor bearing faults. IEEE Trans. Transp. Electrif. 9, 2207 (2022).

    Article 
    MATH 

    Google Scholar 

  • Kim, T. & Lee, S. A novel unsupervised clustering and domain adaptation framework for rotating machinery fault diagnosis. IEEE Trans. Ind. Inform. 19, 9404 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhang, W. et al. Deephealth: A self-attention based method for instant intelligent predictive maintenance in industrial internet of things. IEEE Trans. Ind. Inf. 17(8), 5461–5473 (2020).

    Article 
    MATH 

    Google Scholar 

  • Meng, Z., Zhu, J., Cao, S., Li, P. & Xu, C. Bearing fault diagnosis under multi-sensor fusion based on modal analysis and graph attention network. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Chang, M., Yao, D. & Yang, J. Intelligent fault dignosis of rolling bearings using efficient and lightweight resnet networks based on an attention mechanism. IEEE Sens. J. 23, 9136 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Xue, L., Lei, C., Jiao, M., Shi, J. & Li, J. Rolling bearing fault diagnosis method based on self-calibrated coordinate attention mechanism and multi-scale convolutional neural network under small samples. IEEE Sens. J. 23, 10206 (2023).

    Article 
    ADS 

    Google Scholar 

  • Wang, H. et al. Fault diagnosis method for imbalanced data of rotating machinery based on time domain signal prediction and sc-resnest. IEEE Access 11, 38875 (2023).

    Article 

    Google Scholar 

  • Wang, D., Li, Y., Jia, L., Song, Y. & Wen, T. Attention-based bilinear feature fusion method for bearing fault diagnosis. IEEE/ASME Trans. Mechatron. 28, 1695 (2022).

    Article 
    MATH 

    Google Scholar 

  • Wang, X., Zhang, H. & Du, Z. Multi-scale noise reduction attention network for aero-engine bearing fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mao, W., Liu, K., Zhang, Y., Liang, X. & Wang, Z. Self-supervised deep tensor domain-adversarial regression adaptation for online remaining useful life prediction across machines. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    Google Scholar 

  • Pu, H., Zhang, K. & An, Y. Restricted sparse networks for rolling bearing fault diagnosis. IEEE Trans. Ind. Inform. 19, 11139 (2023).

    Article 
    MATH 

    Google Scholar 

  • Wan, S. et al. Bearing fault diagnosis based on multi-sensor information coupling and attentional feature fusion. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Meng, Z., Luo, C., Li, J., Cao, L. & Fan, F. Research on fault diagnosis of rolling bearing based on lightweight model with multiscale features. IEEE Sens. J. 23, 13236 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Lee, C.-Y. & Zhuo, G.-L. Identifying bearing faults using multiscale residual attention and multichannel neural network. IEEE Access 11, 26953–26963 (2023).

    Article 
    MATH 

    Google Scholar 

  • Ma, W., Zhang, Y., Ma, L., Liu, R. & Yan, S. An unsupervised domain adaptation approach with enhanced transferability and discriminability for bearing fault diagnosis under few-shot samples. Expert Syst. Appl. 225, 120084 (2023).

    Article 
    MATH 

    Google Scholar 

  • Yan, X., Zhang, C.-A. & Liu, Y. Multi-branch convolutional neural network with generalized shaft orbit for fault diagnosis of active magnetic bearing-rotor system. Measurement 171, 108778 (2021).

    Article 
    MATH 

    Google Scholar 

  • Buchaiah, S. & Shakya, P. Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection. Measurement 188, 110506. (2022).

    Article 
    MATH 

    Google Scholar 

  • Yang, K., Zhao, L. & Wang, C. A new intelligent bearing fault diagnosis model based on triplet network and svm. Sci. Rep. 12, 5234 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Shao, H. et al. Dual-threshold attention-guided gan and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation. IEEE Trans. Ind. Inform. 19, 9933 (2023).

    Article 
    MATH 

    Google Scholar 

  • Li, J. et al. A new probability guided domain adversarial network for bearing fault diagnosis. IEEE Sens. J. 23(2), 1462–1470 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Han, B., Jiang, X., Wang, J. & Zhang, Z. A novel domain adaptive fault diagnosis method for bearings based on unbalance data generation. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Wang, D., Dong, Y., Wang, H. & Tang, G. Limited fault data augmentation with compressed sensing for bearing fault diagnosis. IEEE Sens. J. 23(13), 14499 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Ren, H., Wang, J., Shen, C., Huang, W. & Zhu, Z. Dual classifier-discriminator adversarial networks for open set fault diagnosis of train bearings. IEEE Sens. J. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Su, Z. et al. Cross-domain open-set fault diagnosis based on target domain slanted adversarial network for rotating machinery. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Liu, S., Jiang, H., Wu, Z., Liu, Y. & Zhu, K. Machine fault diagnosis with small sample based on variational information constrained generative adversarial network. Adv. Eng. Inform. 54, 101762 (2022).

    Article 
    MATH 

    Google Scholar 

  • Dai, Z., Zhao, L., Wang, K. & Zhou, Y. Generative adversarial network to alleviate information insufficiency in intelligent fault diagnosis by generating continuations of signals. Appl. Soft Comput. 147, 110784 (2023).

    Article 
    MATH 

    Google Scholar 

  • Chen, Q. et al. A lightweight and robust model for engineering cross-domain fault diagnosis via feature fusion-based unsupervised adversarial learning. Measurement 205, 112139 (2022).

    Article 

    Google Scholar 

  • Li, J., Liu, Y. & Li, Q. Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method. Measurement 189, 110500. (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhang, J., Zhang, K., An, Y., Luo, H. & Yin, S. An integrated multitasking intelligent bearing fault diagnosis scheme based on representation learning under imbalanced sample condition. IEEE Trans. Neural Netw. Learn. Syst. 1, 1–12 (2023).

    MATH 

    Google Scholar 

  • Liu, X. et al. Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data. Knowl. Based Syst. 251, 109272. (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Ding, Y. et al. Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions. Reliab. Eng. Syst. Saf. 230, 108890. (2023).

    Article 
    MATH 

    Google Scholar 

  • Wang, X., Jiang, H., Liu, Y., Liu, S. & Yang, Q. A dynamic spectrum loss generative adversarial network for intelligent fault diagnosis with imbalanced data. Eng. Appl. Artif. Intell. 126, 106872. (2023).

    Article 
    MATH 

    Google Scholar 

  • Liu, X. et al. A fault diagnosis method of rolling bearing based on improved recurrence plot and convolutional neural network. IEEE Sens. J. 23, 10767 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yuan, Z., Ma, Z., Li, X. & Li, J. A multichannel mn-gcn for wheelset-bearing system fault diagnosis. IEEE Sens. J. 23(3), 2481–2494 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Lyu, P., Zhang, K., Yu, W., Wang, B. & Liu, C. A novel rsg-based intelligent bearing fault diagnosis method for motors in high-noise industrial environment. Adv. Eng. Inform. 52, 101564. (2022).

    Article 

    Google Scholar 

  • Liang, P. et al. Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved resnet under noisy labels and environment. Eng. Appl. Artif. Intell. 115, 105269. (2022).

    Article 
    MATH 

    Google Scholar 

  • Alfarizi, M. G., Tajiani, B., Vatn, J. & Yin, S. Optimized random forest model for remaining useful life prediction of experimental bearings. IEEE Trans. Ind. Inform. 19, 7771 (2022).

    Article 

    Google Scholar 

  • Kumar, A., Parkash, C., Tang, H. & Xiang, J. Intelligent framework for degradation monitoring, defect identification and estimation of remaining useful life (rul) of bearing. Adv. Eng. Inform. 58, 102206 (2023).

    Article 
    MATH 

    Google Scholar 

  • Hua, L., Wu, X., Liu, T. & Li, S. The methodology of modified frequency band envelope kurtosis for bearing fault diagnosis. IEEE Trans. Ind. Inf. 19(3), 2856–2865 (2022).

    Article 
    MATH 

    Google Scholar 

  • Li, Y., Zhou, J., Li, H., Meng, G. & Bian, J. A fast and adaptive empirical mode decomposition method and its application in rolling bearing fault diagnosis. IEEE Sens. J. 23(1), 567–576 (2022).

    Article 
    ADS 
    MATH 
    CAS 

    Google Scholar 

  • Chen, Z. et al. Feature extraction based on hierarchical improved envelope spectrum entropy for rolling bearing fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Zhou, Q., Yi, C., Yan, L., Huang, C. & Lin, J. A blind deconvolution approach based on spectral harmonics-to-noise ratio for rotating machinery condition monitoring. IEEE Trans. Autom. Sci. Eng. 20(2), 1092–1107 (2022).

    Article 
    MATH 

    Google Scholar 

  • Chen, R., Huang, Y., Xu, X., Zhang, X. & Qiu, T. Rolling bearing fault feature extraction method using adaptive maximum cyclostationarity blind deconvolution. IEEE Sens. J. 23, 17761 (2023).

    Article 
    ADS 

    Google Scholar 

  • Li, J., Liu, Y. & Xiang, J. Optimal maximum cyclostationary blind deconvolution for bearing fault detection. IEEE Sens. J. 23, 15975 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yi, C. et al. An adaptive harmonic product spectrum for rotating machinery fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1–12 (2022).

    MATH 

    Google Scholar 

  • Pan, H., Xu, H. & Zheng, J. A novel symplectic relevance matrix machine method for intelligent fault diagnosis of roller bearing. Expert Syst. Appl. 192, 116400 (2022).

    Article 
    MATH 

    Google Scholar 

  • Ma, C., Yang, Z., Zhang, K., Xiang, L. & Xu, Y. Optimization of Ramanujan subspace periodic and its application in identifying industrial bearing fault features. IEEE Trans. Instrum. Meas. 72, 1–7 (2022).

    MATH 

    Google Scholar 

  • Mitra, S. & Koley, C. Early and intelligent bearing fault detection using adaptive superlets. IEEE Sens. J. 23(7), 7992–8000 (2023).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Zhao, H. et al. Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network. IEEE Trans. Reliab. 72, 692 (2022).

    Article 
    MATH 

    Google Scholar 

  • Xue, Y., Yang, R., Chen, X., Tian, Z. & Wang, Z. A novel local binary temporal convolutional neural network for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Cui, X. et al. A novel fault diagnosis method for rotor-bearing system based on instantaneous orbit fusion feature image and deep convolutional neural network. IEEE/ASME Trans. Mechatron. 28(2), 1013–1024 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhang, B., Pang, X., Zhao, P. & Lu, K. A new method based on encoding data probability density and convolutional neural network for rotating machinery fault diagnosis. IEEE Access 11, 26099–26113 (2023).

    Article 

    Google Scholar 

  • Li, Q. et al. Fault diagnosis of bearings and gears based on litenet with feature aggregation. IEEE Trans. Instrum. Meas. 72, 1–9 (2023).

    Google Scholar 

  • Liang, H., Cao, J. & Zhao, X. Multibranch and multiscale dynamic convolutional network for small sample fault diagnosis of rotating machinery. IEEE Sens. J. 23(8), 8973–8988 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Liu, X., Lu, J. & Li, Z. Multi-scale fusion attention convolutional neural network for fault diagnosis of aero-engine rolling bearing. IEEE Sens. J. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Cheng, L. et al. S3m: Two-stage-based semi-self-supervised method for intelligent bearing fault diagnosis. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    Article 

    Google Scholar 

  • Tang, H. et al. Feature extraction of multi-sensors for early bearing fault diagnosis using deep learning based on minimum unscented kalman filter. Eng. Appl. Artif. Intell. 127, 107138 (2024).

    Article 
    MATH 

    Google Scholar 

  • Huo, C. et al. A class-level matching unsupervised transfer learning network for rolling bearing fault diagnosis under various working conditions. Appl. Soft Comput. 146, 110739 (2023).

    Article 
    MATH 

    Google Scholar 

  • Li, F., Wang, L., Wang, D., Wu, J. & Zhao, H. An adaptive multiscale fully convolutional network for bearing fault diagnosis under noisy environments. Measurement 216, 112993 (2023).

    Article 
    MATH 

    Google Scholar 

  • Huo, C., Jiang, Q., Shen, Y., Zhu, Q. & Zhang, Q. Enhanced transfer learning method for rolling bearing fault diagnosis based on linear superposition network. Eng. Appl. Artif. Intell. 121, 105970 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhao, X. et al. Multiscale deep graph convolutional networks for intelligent fault diagnosis of rotor-bearing system under fluctuating working conditions. IEEE Trans. Ind. Inf. 19(1), 166–176 (2022).

    Article 
    MATH 

    Google Scholar 

  • Feng, K. et al. Digital twin enabled domain adversarial graph networks for bearing fault diagnosis. IEEE Trans. Ind. Cyber Phys. Syst. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Lu, F., Tong, Q., Feng, Z. & Wan, Q. Unbalanced bearing fault diagnosis under various speeds based on spectrum alignment and deep transfer convolution neural network. IEEE Trans. Ind. Inform. 19, 8295 (2022).

    Article 
    MATH 

    Google Scholar 

  • Yang, S., Cui, Z. & Gu, X. A balanced deep transfer network for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 
    CAS 

    Google Scholar 

  • Li, X., Hu, H., Zhang, S. & Tang, G. A fault diagnosis method for rotating machinery with semi-supervised graph convolutional network and images converted from vibration signals. IEEE Sens. J. 23, 11946 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yin, P. et al. A multi-scale graph convolutional neural network framework for fault diagnosis of rolling bearing. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Chen, P., Zhao, R., He, T., Wei, K. & Yuan, J. Unsupervised structure subdomain adaptation based the contrastive cluster center for bearing fault diagnosis. Eng. Appl. Artif. Intell. 122, 106141 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhu, J. et al. Application of recurrent neural network to mechanical fault diagnosis: A review. J. Mech. Sci. Technol. 36(2), 527–542 (2022).

    Article 
    MATH 

    Google Scholar 

  • Imamura, L., Avila, S., Pacheco, F., Salles, M. & Jablon, L. Diagnosis of unbalance in lightweight rotating machines using a recurrent neural network suitable for an edge-computing framework. J. Control Autom. Electr. Syst. 33(4), 1272–1285 (2022).

    Article 

    Google Scholar 

  • Chang, Y., Chen, J., Lv, H. & Liu, S. Heterogeneous bi-directional recurrent neural network combining fusion health indicator for predictive analytics of rotating machinery. ISA Trans. 122, 409–423. (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, Z. et al. Attention gate guided multiscale recursive fusion strategy for deep neural network-based fault diagnosis. Eng. Appl. Artif. Intell. 126, 107052. (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Sun, H., Yang, B. & Lin, S. An open set diagnosis method for rolling bearing faults based on prototype and reconstructed integrated network. IEEE Trans. Instrum. Meas. 72, 1–10 (2022).

    MATH 

    Google Scholar 

  • Li, C. et al. Incrementally contrastive learning of homologous and interclass features for the fault diagnosis of rolling element bearings. IEEE Trans. Ind. Inform. 19, 11182 (2023).

    Article 

    Google Scholar 

  • Wang, N. et al. Manifold-contrastive broad learning system for wheelset bearing fault diagnosis. IEEE Trans. Intell. Transp. Syst. 24, 9886 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhu, Z. et al. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement 1, 112346 (2022).

    Google Scholar 

  • Xu, Z. et al. Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors. Renew. Energy 182, 615–626. (2022).

    Article 
    MATH 

    Google Scholar 

  • Shi, J. et al. Planetary gearbox fault diagnosis using bidirectional-convolutional lstm networks. Mech. Syst. Signal Process. 162, 107996. (2022).

    Article 

    Google Scholar 

  • An, Y., Zhang, K., Liu, Q., Chai, Y. & Huang, X. Rolling bearing fault diagnosis method base on periodic sparse attention and lstm. IEEE Sens. J. 22(12), 12044–12053. (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zhi Tang, X. L., Bo, Lin & Wei, D. A semi-supervised transferable lstm with feature evaluation for fault diagnosis of rotating machinery. Appl. Intell. 52, 1703–1717. (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhu, S. et al. A transformer model with enhanced feature learning and its application in rotating machinery diagnosis. ISA Trans. 133, 1–12 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Xu, P. & Zhang, L. A fault diagnosis method for rolling bearing based on 1d-vit model. IEEE Access 11, 39664 (2023).

    Article 
    MATH 

    Google Scholar 

  • Fang, H. et al. A lightweight transformer with strong robustness application in portable bearing fault diagnosis. IEEE Sens. J. 23, 9649 (2023).

    Article 
    ADS 

    Google Scholar 

  • Wu, H., Triebe, M. J. & Sutherland, J. W. A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application. J. Manuf. Syst. 67, 439–452 (2023).

    Article 

    Google Scholar 

  • Sun, Z., Wang, Y. & Gao, J. Intelligent fault diagnosis of rotating machinery under varying working conditions with global-local neighborhood and sparse graphs embedding deep regularized autoencoder. Eng. Appl. Artif. Intell. 124, 106590 (2023).

    Article 
    MATH 

    Google Scholar 

  • Shi, M. et al. Deep hypergraph autoencoder embedding: An efficient intelligent approach for rotating machinery fault diagnosis. Knowl. Based Syst. 260, 110172 (2023).

    Article 
    MATH 

    Google Scholar 

  • Shi, M. et al. Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery. Reliab. Eng. Syst. Saf. 240, 109601 (2023).

    Article 
    MATH 

    Google Scholar 

  • Chen, X., Guo, Y. & Na, J. Instantaneous-angular-speed-based synchronous averaging tool for bearing outer race fault diagnosis. IEEE Trans. Ind. Electron. 70(6), 6250–6260 (2022).

    Article 
    MATH 

    Google Scholar 

  • Gwak, M., Kim, M. S., Yun, J. P. & Park, P. Robust and explainable fault diagnosis with power-perturbation-based decision boundary analysis of deep learning models. IEEE Trans. Ind. Inform. 19, 6982 (2022).

    Article 
    MATH 

    Google Scholar 

  • Chen, C., Shi, J., Shen, M., Feng, L. & Tao, G. A predictive maintenance strategy using deep learning quantile regression and kernel density estimation for failure prediction. IEEE Trans. Instrum. Meas. 72, 1–12 (2023).

    Google Scholar 

  • Hongwei, F., Ceyi, X., Jiateng, M., Xiangang, C. & Xuhui, Z. A novel intelligent diagnosis method of rolling bearing and rotor composite faults based on vibration signal-to-image mapping and cnn-svm. Meas. Sci. Technol. 34(4), 044008. (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lee, S. & Kim, T. Impact of deep learning optimizers and hyperparameter tuning on the performance of bearing fault diagnosis. IEEE Access 11, 55046–55070. (2023).

    Article 

    Google Scholar 

  • Ye, X., Gao, L., Li, X. & Wen, L. A new hyper-parameter optimization method for machine learning in fault classification. Appl. Intell. 53(11), 14182–14200 (2023).

    Article 

    Google Scholar 

  • Zhang, Y., Liu, W., Wang, X. & Shaheer, M. A. A novel hierarchical hyper-parameter search algorithm based on greedy strategy for wind turbine fault diagnosis. Expert Syst. Appl. 202, 117473. (2022).

    Article 

    Google Scholar 

  • Zhang, M., Yin, J. & Chen, W. Rolling bearing fault diagnosis based on time-frequency feature extraction and iba-svm. IEEE Access 10, 85641–85654. (2022).

    Article 

    Google Scholar 

  • Wen, L., Xie, X., Li, X. & Gao, L. A new ensemble convolutional neural network with diversity regularization for fault diagnosis. J. Manuf. Syst. 62, 964–971. (2022).

    Article 
    MATH 

    Google Scholar 

  • Chen, R., Zhu, Y., Yang, L., Hu, X. & Chen, G. Adaptation regularization based on transfer learning for fault diagnosis of rotating machinery under multiple operating conditions. IEEE Sens. J. 22(11), 10655–10662. (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Hu, Q., Si, X., Qin, A., Lv, Y. & Liu, M. Balanced adaptation regularization based transfer learning for unsupervised cross-domain fault diagnosis. IEEE Sens. J. 22(12), 12139–12151. (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Lyu, P., Zhang, H., Yu, W. & Liu, C. A novel model-independent data augmentation method for fault diagnosis in smart manufacturing. In Leading Manufacturing Systems Transformation—Proceedings of the 55th CIRP Conference on Manufacturing Systems 949–954 (2022).

  • Shi, D., Ye, Y., Gillwald, M. & Hecht, M. Robustness enhancement of machine fault diagnostic models for railway applications through data augmentation. Mech. Syst. Signal Process. 164, 108217. (2022).

    Article 
    MATH 

    Google Scholar 

  • Ai, T. et al. Fully simulated-data-driven transfer-learning method for rolling-bearing-fault diagnosis. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    Article 
    MATH 

    Google Scholar 

  • Su, H., Xiang, L., Hu, A., Xu, Y. & Yang, X. A novel method based on meta-learning for bearing fault diagnosis with small sample learning under different working conditions. Mech. Syst. Signal Process. 169, 108765. (2022).

    Article 
    MATH 

    Google Scholar 

  • Ma, R., Han, T. & Lei, W. Cross-domain meta learning fault diagnosis based on multi-scale dilated convolution and adaptive relation module. Knowl. Based Syst. 261, 110175. (2023).

    Article 
    MATH 

    Google Scholar 

  • Qian, Q., Zhou, J. & Qin, Y. Relationship transfer domain generalization network for rotating machinery fault diagnosis under different working conditions. IEEE Trans. Ind. Inform. 19, 9898 (2023).

    Article 
    MATH 

    Google Scholar 

  • Fang, H., Liu, H., Wang, X., Deng, J. & An, J. The method based on clustering for unknown failure diagnosis of rolling bearings. IEEE Trans. Instrum. Meas. 72, 1–8 (2023).

    MATH 

    Google Scholar 

  • Liu, X., Sun, W., Li, H., Li, Q. & Lv, S. A fusing domain feature and sharing label space based fault diagnosis approach for different distribution and unlabeled rolling bearing sample. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Liu, Y. et al. A lifelong learning method based on generative feature replay for bearing diagnosis with incremental fault types. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    Google Scholar 

  • Yue, K., Li, J., Chen, Z., Huang, R. & Li, W. Multiple source-free domain adaptation network based on knowledge distillation for machinery fault diagnosis. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Li, Y., Dong, Y., Xu, M., Liu, P. & Wang, R. Instance weighting based partial domain adaptation for intelligent fault diagnosis of rotating machinery. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Ma, W., Liu, R., Guo, J., Wang, Z. & Ma, L. A collaborative central domain adaptation approach with multi-order graph embedding for bearing fault diagnosis under few-shot samples. Appl. Soft Comput. 140, 110243 (2023).

    Article 
    MATH 

    Google Scholar 

  • Gao, Q., Huang, T., Zhao, K., Shao, H. & Jin, B. Multi-source weighted source-free domain transfer method for rotating machinery fault diagnosis. Expert Syst. Appl. 237, 121585 (2024).

    Article 

    Google Scholar 

  • Jiang, Y., Xia, T., Wang, D., Zhang, K. & Xi, L. Joint adaptive transfer learning network for cross-domain fault diagnosis based on multi-layer feature fusion. Neurocomputing 487, 228–242 (2022).

    Article 
    MATH 

    Google Scholar 

  • Liu, G., Shen, W., Gao, L. & Kusiak, A. Automated broad transfer learning for cross-domain fault diagnosis. J. Manuf. Syst. 66, 27–41 (2023).

    Article 
    MATH 

    Google Scholar 

  • Li, W., Shang, Z., Gao, M., Liu, F. & Liu, H. Intelligent fault diagnosis of partial deep transfer based on multi-representation structural intraclass compact and double-aligned domain adaptation. Mech. Syst. Signal Process. 197, 110412 (2023).

    Article 
    MATH 

    Google Scholar 

  • Jin, X., Que, Z., Sun, Y., Guo, Y. & Qiao, W. A data-driven approach for bearing fault prognostics. IEEE Trans. Ind. Appl. 55(4), 3394–3401 (2019).

    Article 
    MATH 

    Google Scholar 

  • Wang, H., Yang, J., Wang, R. & Shi, L. Remaining useful life prediction of bearings based on convolution attention mechanism and temporal convolution network. IEEE Access 11, 24407–24419 (2023).

    Article 
    MATH 

    Google Scholar 

  • Xu, G., Hou, D., Qi, H. & Bo, L. High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life. Mech. Syst. Signal Process. 146, 107050 (2021).

    Article 

    Google Scholar 

  • Qin, Y. et al. Dynamic weighted federated remaining useful life prediction approach for rotating machinery. Mech. Syst. Signal Process. 202, 110688 (2023).

    Article 
    MATH 

    Google Scholar 

  • Alfarizi, M. G., Tajiani, B., Vatn, J. & Yin, S. Optimized random forest model for remaining useful life prediction of experimental bearings. IEEE Trans. Ind. Inf. 19(6), 7771–7779. (2023).

    Article 
    MATH 

    Google Scholar 

  • Teoh, Y. K., Gill, S. S. & Parlikad, A. K. Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning. IEEE Internet Things J. 10, 2087 (2021).

    Article 

    Google Scholar 

  • He, C. et al. Real-time fault diagnosis of motor bearing via improved cyclostationary analysis implemented onto edge computing system. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Wan, W., Chen, J. & Xie, J. Mim-graph: A multi-sensor network approach for fault diagnosis of hsr bogie bearings at the iot edge via mutual information maximization. ISA Trans. 139, 574 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, J., Ma, C., Gui, H. & Wang, S. Intelligent digital-twin prediction and reverse control system architecture for thermal errors enabled by deep learning and cloud-edge computing. Expert Syst. Appl. 225, 120122 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhu, X. et al. Deep reinforcement learning-based edge computing offloading algorithm for software-defined iot. Comput. Netw. 235, 110006 (2023).

    Article 
    MATH 

    Google Scholar 

  • Bengherbia, B. et al. Design and hardware implementation of an intelligent industrial iot edge device for bearing monitoring and fault diagnosis. Arab. J. Sci. Eng. 1, 1–17 (2023).

    Google Scholar 

  • Maurya, M., Panigrahi, I., Dash, D. & Malla, C. Intelligent fault diagnostic system for rotating machinery based on iot with cloud computing and artificial intelligence techniques: A review. Soft Comput. 1, 1–18 (2023).

    MATH 

    Google Scholar 

  • Nan, Y., Jiang, S. & Li, M. Large-scale video analytics with cloud-edge collaborative continuous learning. ACM Trans. Sens. Netw. 20, 1 (2023).

    Article 
    MATH 

    Google Scholar 

  • Lu, S., Lu, J., An, K., Wang, X. & He, Q. Edge computing on iot for machine signal processing and fault diagnosis: A review. IEEE Internet Things J. 10, 11093 (2023).

    Article 
    MATH 

    Google Scholar 

  • Fu, L. et al. Edgecog: A real-time bearing fault diagnosis system based on lightweight edge computing. IEEE Trans. Instrum. Meas. 1, 1 (2023).

    MATH 

    Google Scholar 

  • Yin, Y., Liu, Z., Zuo, M., Zhou, Z. & Zhang, J. A three-dimensional vibration data compression method for rolling bearing condition monitoring. IEEE Trans. Instrum. Meas. 72, 1–10 (2023).

    MATH 

    Google Scholar 

  • Qizhao, W., Li, Q., Wang, K., Wang, H. & Peng, Z. Efficient federated learning for fault diagnosis in industrial cloud-edge computing. Comput. Arch. Inform. Numer. Comput. 103(10), 2319–2337 (2021).

    MathSciNet 
    MATH 

    Google Scholar 

  • Goyal, V., Das, R. & Bertacco, V. Hardware-friendly user-specific machine learning for edge devices. ACM Trans. Embedded Comput. Syst. 21(5), 1–29 (2022).

    Article 
    MATH 

    Google Scholar 

  • Li, J., Wang, Y., Zi, Y., Zhang, H. & Wan, Z. Causal disentanglement: A generalized bearing fault diagnostic framework in continuous degradation mode. IEEE Trans. Neural Netw. Learn. Syst. 34, 6250 (2021).

    Article 
    MATH 

    Google Scholar 

  • Li, H., Liu, T., Wu, X. & Li, S. Correlated svd and its application in bearing fault diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 1, 1 (2021).

    MATH 
    CAS 

    Google Scholar 

  • Chen, Z. et al. Explainable deep ensemble model for bearing fault diagnosis under variable conditions. IEEE Sens. J. 23, 17737 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Choudhary, A., Mian, T., Fatima, S. & Panigrahi, B. Passive thermography based bearing fault diagnosis using transfer learning with varying working conditions. IEEE Sens. J. 23(5), 4628–4637 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yu, X. et al. An adaptive domain adaptation method for rolling bearings’ fault diagnosis fusing deep convolution and self-attention networks. IEEE Trans. Instrum. Meas. 72, 1–14 (2023).

    Google Scholar 

  • Zhou, Y., Dong, Y. & Tang, G. Time-varying online transfer learning for intelligent bearing fault diagnosis with incomplete unlabeled target data. IEEE Trans. Ind. Inform. 19, 7733 (2022).

    Article 
    MATH 

    Google Scholar 

  • Ruan, D., Han, J., Yan, J. & Gühmann, C. Light convolutional neural network by neural architecture search and model pruning for bearing fault diagnosis and remaining useful life prediction. Sci. Rep. 13(1), 5484 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Pilarski, S., Staniszewski, M., Bryan, M., Villeneuve, F. & Varró, D. Predictions-on-chip: model-based training and automated deployment of machine learning models at runtime: For multi-disciplinary design and operation of gas turbines. Softw. Syst. Model. 20, 685–709 (2021).

    Article 

    Google Scholar 

  • Zhang, W., Chen, D., Xiao, Y. & Yin, H. Semi-supervised contrast learning based on multi-scale attention and multi-target contrast learning for bearing fault diagnosis. IEEE Trans. Ind. Inform. 19, 10056 (2023).

    Article 
    MATH 

    Google Scholar 

  • Chen, X. et al. Deep transfer learning for bearing fault diagnosis: A systematic review since 2016. IEEE Trans. Instrum. Meas. 72, 1 (2023).

    MATH 

    Google Scholar 

  • Elsamanty, M., Ibrahim, A. & Salman, W. S. Principal component analysis approach for detecting faults in rotary machines based on vibrational and electrical fused data. Mech. Syst. Signal Process. 200, 110559 (2023).

    Article 

    Google Scholar 

  • Peng, C., Ouyang, Y., Gui, W., Li, C. & Tang, Z. A multi-indicator fusion-based approach for fault feature selection and classification of rolling bearings. IEEE Trans. Ind. Inform. 19, 8635 (2022).

    Article 
    MATH 

    Google Scholar 

  • Chen, Z., Wu, J., Deng, C., Wang, X. & Wang, Y. Deep attention relation network: A zero-shot learning method for bearing fault diagnosis under unknown domains. IEEE Trans. Reliab. 72(1), 79–89 (2022).

    Article 
    MATH 

    Google Scholar 

  • Yu, G. et al. Few-shot fault diagnosis method of rotating machinery using novel mcgm based cnn. IEEE Trans. Ind. Inform. 19, 10944 (2023).

    Article 

    Google Scholar 

  • Du, W., Hu, P., Wang, H., Gong, X. & Wang, S. Fault diagnosis of rotating machinery based on 1d–2d joint convolution neural network. IEEE Trans. Ind. Electron. 70(5), 5277–5285 (2022).

    Article 
    MATH 

    Google Scholar 

  • Mario, B., Mezhuyev, V. & Tschandl, M. Predictive maintenance for railway domain: A systematic literature review. IEEE Eng. Manag. Rev. 51, 120 (2023).

    Article 

    Google Scholar 

  • Alenizi, F. A., Abbasi, S., Mohammed, A. H. & Rahmani, A. M. The artificial intelligence technologies in industry 4.0: A taxonomy, approaches, and future directions. Comput. Ind. Eng. 1, 109662 (2023).

    Article 

    Google Scholar 

  • Jieyang, P. et al. A systematic review of data-driven approaches to fault diagnosis and early warning. J. Intell. Manuf. 1, 1–28 (2022).

    Google Scholar 

  • Chen, C., Fu, H., Zheng, Y., Tao, F. & Liu, Y. The advance of digital twin for predictive maintenance: The role and function of machine learning. J. Manuf. Syst. 71, 581–594 (2023).

    Article 
    MATH 

    Google Scholar 

  • CaseWestern Reserve University (CWRU). Bearing Data Center. (Case School of Engineering, CWRU).

  • Lessmeier, C., Kimotho, J. K., Zimmer, D. & Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In PHM Society European Conference, vol. 3 (2016)

  • Yaguo, L. et al. Xjtu-sy rolling element bearing accelerated life test datasets: A tutorial. J. Mech. Eng. 55(16), 1–6 (2019).

    Article 
    MATH 

    Google Scholar 

  • Zhang, P. Vibration time-frequency images of planetary gearboxes. IEEE Dataport 1, 1. (2022).

    Article 
    MATH 

    Google Scholar 

  • Lee, J., Qiu, H., Yu, G. & Lin, J. Bearing Data Set. NASA Prognostics Data Repository. (2007).

  • Shao, S., McAleer, S., Yan, R. & Baldi, P. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inf. 15(4), 2446–2455. (2019).

    Article 

    Google Scholar 

  • Liu, S. et al. Bearing fault diagnosis based on improved convolutional deep belief network. Appl. Sci. 10(18), 359. (2020).

    Article 
    MATH 
    CAS 

    Google Scholar 

  • Liu, X., Sun, W., Li, H., Hussain, Z. & Liu, A. The method of rolling bearing fault diagnosis based on multi-domain supervised learning of convolution neural network. Energies 15(13), 614. (2022).

    Article 
    MATH 

    Google Scholar 

  • Nectoux, P. et al. Pronostia: An experimental platform for bearings accelarated life test. In Proceedings of the IEEE International Conference on Prognostics and Health Management, Denver, CO, USA, vol. 20 (2012).

  • Zhao, Z. et al. Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Trans. 107, 224 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, W., Liu, Y., Li, S. & Chen, W. Adaptive time-reassigned synchrosqueezing transform for bearing fault diagnosis. IEEE Sens. J. 23(8), 8545 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Ren, Z., Jiang, Y., Yang, X., Tang, Y. & Zhang, W. Learnable faster kernel-pca for nonlinear fault detection: Deep autoencoder-based realization. J. Ind. Inf. Integr. 40, 100622 (2024).

    Google Scholar 

  • Jiang, Y., Yin, S. & Kaynak, O. Optimized design of parity relation-based residual generator for fault detection: Data-driven approaches. IEEE Trans. Ind. Inf. 17(2), 1449–1458 (2020).

    Article 
    MATH 

    Google Scholar 

  • Mahesh, T. et al. Data-driven intelligent condition adaptation of feature extraction for bearing fault detection using deep responsible active learning. IEEE Access 1, 1 (2024).

    MATH 

    Google Scholar 

  • Lei, Y. et al. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 138, 106587. (2020).

    Article 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *