
Omri, N., Al Masry, Z., Mairot, N., Giampiccolo, S. & Zerhouni, N. Industrial data management strategy towards an SME-oriented PHM. J. Manuf. Syst. 1(56), 23–36. (2020).
Google Scholar
Zio, E. Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliab. Eng. Syst. Saf. 218, 108119. (2022).
Google Scholar
Wang, J., Ye, L., Gao, R. X., Li, C. & Zhang, L. Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 57(12), 3920–3934. (2019).
Google Scholar
Maddikunta, P. K. R. et al. Industry 50: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257. (2022).
Google Scholar
Ogunsakin, R., Mehandjiev, N. & Marin, C. A. Towards adaptive digital twins architecture. Comput. Ind. 149, 103920. (2023).
Google Scholar
Hu, X. et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Ind. Electron. M. 14(3), 65–91. (2020).
Google Scholar
Cui, Z. et al. A review of digital twin technology for electromechanical products: Evolution focus throughout key lifecycle phases. J. Manuf. Syst. 70, 264–287. (2023).
Google Scholar
Khalid, S. et al. A comprehensive review of emerging trends in aircraft structural prognostics and health management. Mathematics 11(18), 3837. (2023).
Google Scholar
Yüce, C. et al. Prognostics and health management of wind energy infrastructure systems. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng. 8(2), 020801. (2022).
Google Scholar
Hosamo, H. H., Nielsen, H. K., Alnmr, A. N., Svennevig, P. R. & Svidt, K. A review of the digital twin technology for fault detection in buildings. Front. Built. Environ. 8, 1013196. (2022).
Google Scholar
Hodavand, F., Ramaji, I. J. & Sadeghi, N. Digital twin for fault detection and diagnosis of building operations: a systematic review. Buildings 13(6), 1426. (2023).
Google Scholar
Jiménez Rios, A., Plevris, V. & Nogal, M. Bridge management through digital twin-based anomaly detection systems: a systematic review. Front. Built. Environ. 9, 1176621. (2023).
Google Scholar
Gao, Z. & Odgaard, P. Real-time monitoring, fault prediction and health management for offshore wind turbine systems. Renew. Energy 218, 119258. (2023).
Google Scholar
Wang, D. et al. The role of digital twin in optical communication: fault management, hardware configuration, and transmission simulation. IEEE Commun. Mag. 59, 133–139. (2021).
Google Scholar
Tao, F., Xiao, B., Qi, Q., Cheng, J. & Ji, P. Digital twin modeling. J. Manuf. Syst. 64, 372–389. (2022).
Google Scholar
Wang, J. et al. Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis. Reliab. Eng. Syst. Saf. 234, 109152. (2023).
Google Scholar
Zhang, Y. et al. Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing. Reliab. Eng. Syst. Saf. 234, 109186. (2023).
Google Scholar
Xie, X. et al. Fault diagnosis method for bearing based on digital twin. Math. Probl. Eng. 2022, e2982746. (2022).
Google Scholar
Cai, W., Zhang, Q. & Cui, J. A novel fault diagnosis method for denoising autoencoder assisted by digital twin. Comput. Intell. Neurosci. 2022, 1–8. (2022).
Google Scholar
Guo, K., Wan, X., Liu, L., Gao, Z. & Yang, M. Fault diagnosis of intelligent production line based on digital twin and improved random forest. Appl. Sci. 11, 7733. (2021).
Google Scholar
Xia, M. et al. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliab. Eng. Syst. Saf. 215, 107938. (2021).
Google Scholar
Deebak, B. D. & Al-Turjman, F. Digital-twin assisted: Fault diagnosis using deep transfer learning for machining tool condition. Int. J. Intell. Syst. 37(12), 10289–10316. (2022).
Google Scholar
Ma, L., Jiang, B., Xiao, L. & Lu, N. Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis. Mech. Syst. Signal Process. 200, 110490. (2023).
Google Scholar
Ma, X., Chen, F., Wang, Z., Li, K. & Tian, C. Digital twin model for chiller fault diagnosis based on SSAE and transfer learning. Build. Environ. 243, 110718. (2023).
Google Scholar
Bhatti, G., Mohan, H. & Raja, S. R. Towards the future of smart electric vehicles: Digital twin technology. Renew. Sustain. Energy Rev. 141, 110801. (2021).
Google Scholar
Lv, Z., Chen, D., Feng, H., Zhu, H. & Lv, H. Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics. IEEE Trans. Intell. Transp. Syst. 23, 25106–25114. (2022).
Google Scholar
Li, Y. et al. Interactive real-time monitoring and information traceability for complex aircraft assembly field based on digital twin. IEEE Trans. Industr. Inform. 19(9), 9745–9756. (2023).
Google Scholar
Yang, B., Lei, Y., Li, X. & Li, N. Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization. Expert Syst. Appl. 244, 122997. (2024).
Google Scholar
Xue, R., Zhang, P., Huang, Z. & Wang, J. Digital twin-driven fault diagnosis for CNC machine tool. Int. J. Adv. Manuf. Technol. 131, 5457–5470. (2022).
Google Scholar
Jiao, J., Zhao, M., Lin, J. & Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing 417, 36–63. (2020).
Google Scholar
Tao, F., Zhang, H., Liu, A. & Nee, A. Y. C. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inf. 15(4), 2405–2415. (2018).
Google Scholar
Tao, F. et al. Digital twin-driven product design framework. Int. J. Prod. Res. 57(12), 3935–3953. (2019).
Google Scholar
Lu, Y. et al. Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot Comput. Integr. Manuf. 61, 101837. (2020).
Google Scholar
Madni, A. M., Madni, C. C. & Lucero, S. D. Leveraging digital twin technology in model-based systems engineering. Systems 7(1), 7. (2019).
Google Scholar
Liu, Y. et al. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE access. 7, 49088–49101. (2019).
Google Scholar
Leng, J. et al. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. J. Amb. Intel. Hum. Comp. 10, 1155–1166. (2019).
Google Scholar
Corral-Acero, J. et al. The ‘Digital Twin’to enable the vision of precision cardiology. Ur. Heart J. 41(48), 4556–4564. (2020).
Google Scholar
Pan, Y. & Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Automat. Constr. 124, 103564. (2021).
Google Scholar
White, G., Zink, A., Codecá, L. & Clarke, S. A digital twin smart city for citizen feedback. Cities. 110, 103064. (2021).
Google Scholar
Liu, M., Fang, S., Dong, H. & Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 58, 346–361. (2021).
Google Scholar
Liu, C., Vengayil, H., Zhong, R. Y. & Xu, X. A systematic development method for cyber-physical machine tools. J. Manuf. Syst. 48, 13–24. (2018).
Google Scholar
Martins, A. B., Farinha, J. T. & Cardoso, A. M. Calibration and certification of industrial sensors – a global review. WSEAS Trans. Syst. Control 15, 394–416. (2020).
Google Scholar
Martins, A., Fonseca, I., Farinha, J. T., Reis, J. & Cardoso, A. J. M. Online monitoring of sensor calibration status to support condition-based maintenance. Sensors 23(5), 2402. (2023).
Google Scholar
Hu, W., Wang, T. & Chu, F. A novel Ramanujan digital twin for motor periodic fault monitoring and detection. IEEE Trans. Ind. Inform. 23(19), 11564–11572. (2023).
Google Scholar
Yu, X., Yang, Y., Du, M., He, Q. & Peng, Z. Dynamic model-embedded intelligent machine fault diagnosis without fault data. J IEEE Trans. Ind. Inf. 19(12), 11466–11476. (2023).
Google Scholar
Song, Z., Shi, H., Bai, X. & Li, G. Digital twin-assisted fault diagnosis system for robot joints with insufficient data. J. Field Rob. 40, 258–271. (2022).
Google Scholar
Zhang, T. et al. Intelligent fault diagnosis of machines with small & imbalanced data: a state-of-the-art review and possible extensions. ISA. T. 119, 152–171. (2022).
Google Scholar
Wang, Y., Tao, F., Zhang, M., Wang, L. & Zuo, Y. Digital twin enhanced fault prediction for the autoclave with insufficient data. J. Manuf. Syst. 60, 350–359. (2021).
Google Scholar
Yan, S. et al. Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization. Reliab. Eng. Syst. Saf. 239, 109522. (2023).
Google Scholar
Ma, X., Qi, Q. & Tao, F. An ontology-based data-model coupling approach for digital twin. Rob. Comput. Integr. Manuf. 86, 102649. (2024).
Google Scholar
Xia, J., Huang, R., Chen, Z., He, G. & Li, W. A novel digital twin-driven approach based on physical-virtual data fusion for gearbox fault diagnosis. Reliab. Eng. Syst. Saf. 240, 109542. (2023).
Google Scholar
Yin, T. et al. Knowledge and data dual-driven transfer network for industrial robot fault diagnosis. Mech. Syst. Signal Process. 182, 109597. (2023).
Google Scholar
Lv, J., Li, X., Sun, Y., Zheng, Y. & Bao, J. A bio-inspired LIDA cognitive-based digital twin architecture for unmanned maintenance of machine tools. Robot Comput. Integr. Manuf. 80, 102489. (2023).
Google Scholar
Xiao, B., Qi, Q. & Tao, F. Multi-dimensional modeling and abnormality handling of digital twin shop floor. J. Ind. Inf. Integr. 35, 100492. (2023).
Google Scholar
Zheng, Y., Yang, S. & Cheng, H. An application framework of digital twin and its case study. J. Amb. Intel. Hum. Comp. 10, 1141–1153. (2019).
Google Scholar
Soualhi, M. et al. Dealing with prognostics uncertainties: Combination of direct and recursive remaining useful life estimations. Comput. Ind. 144, 103766. (2023).
Google Scholar
Jeong, S. et al. A novel graph-based missing values imputation method for industrial lubricant data. Comput. Ind. 150, 103937. (2023).
Google Scholar
Zhang, Z. et al. Digital twin-enabled grasp outcomes assessment for unknown objects using visual-tactile fusion perception. Rob. Comput. Integr. Manuf. 84, 102601. (2023).
Google Scholar
Xi, D., Hou, L., Luo, J., Liu, F. & Qin, Y. The meta-defect-detection system for gear pitting based on digital twin. Adv. Eng. Inf. 56, 102003. (2023).
Google Scholar
Wang, P. & Luo, M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. J. Manuf. Syst. 58, 16–32 (2021).
Google Scholar
Hu, M. et al. Digital twin model of gas turbine and its application in warning of performance fault. Chin. J. Aeronaut. 36(3), 449–470. (2022).
Google Scholar
Lohman, W. et al. Building digital twins of cities using the Inter Model Broker framework. Future Generation Comput. Syst. 1(148), 501–513 (2023).
Google Scholar
Xing, Y. et al. An online learning assisted packet scheduler for MPTCP in mobile networks. IEEE/ACM Trans. Netw. 31(5), 2297–2312. (2023).
Google Scholar
Jiang, J. et al. A digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis. Sci. Rep. 12, 675. (2022).
Google Scholar
Huang, Y., Yuan, B., Xu, S. & Han, T. Fault diagnosis of permanent magnet synchronous motor of coal mine belt conveyor based on digital twin and ISSA-RF. Processes 10, 1679. (2022).
Google Scholar
Wei, Y., Hu, T., Dong, L. & Ma, S. Digital twin-driven manufacturing equipment development. Rob. Comput. Integr. Manuf. 83, 102557. (2023).
Google Scholar
Vered, Y. & Elliott, S. J. The use of digital twins to remotely update feedback controllers for the motion control of nonlinear dynamic systems. Mech. Syst. Signal Process. 185, 109770. (2023).
Google Scholar
Rodríguez, F., Chicaiza, W. D., Sánchez, A. & Escaño, J. M. Updating digital twins: Methodology for data accuracy quality control using machine learning techniques. Comput. Ind. 151, 103958. (2023).
Google Scholar
Regis, A., Arroyave-Tobon, S., Linares, J.-M. & Mermoz, E. Physic-based vs data-based digital twins for bush bearing wear diagnostic. Wear. 526–7, 204888. (2023).
Google Scholar
Bhatt, S. et al. Attribute-based access control for AWS internet of things and secure industries of the future. IEEE Access. 9, 107200–107223. (2021).
Google Scholar
Palumbo, F. et al. Characterization and analysis of cloud-to-user latency: the case of Azure and AWS. Comput. Netw. 15(184), 107693. (2021).
Google Scholar
Yao, S., Kang, Q., Zhou, M., Rawa, J. M. & Abusorrah, A. A survey of transfer learning for machinery diagnostics and prognostics. Artif. Intell. Rev. 56(4), 2871–2922. (2023).
Google Scholar
Naseri, F. et al. Digital twin of electric vehicle battery systems: comprehensive review of the use cases, requirements, and platforms. Renew. Sustain. Energy Rev. 179, 113280. (2023).
Google Scholar
Alves, R. G., Maia, R. F. & Lima, F. Development of a digital twin for smart farming: Irrigation management system for water saving. J. Cleaner. Prod. 388, 135920. (2023).
Google Scholar
Seo, J., Kim, K., Seo, S. & Park, S. DARK: deep automatic Redis knobs tuning system depending on the persistence method. Expert Syst. Appl. 221, 119697. (2023).
Google Scholar
Lilis, G. & Kayal, M. A secure and distributed message oriented middleware for smart building applications. Autom. Constr. 86, 163–175. (2017).
Google Scholar
Bender, A. et al. A flexible system architecture for acquisition and storage of naturalistic driving data. IEEE Trans. Intell. Transp. Syst. 17(6), 1748–1761. (2016).
Google Scholar
Uçak, E., Karagümüş, E. & Şener, C. A scalable platform for big data analysis in public transport. Concurr. Comput. 34(9), e6534. (2022).
Google Scholar
Vigoya, L., Pardal, A., Fernandez, D. & Carneiro, V. Application of machine learning algorithms for the validation of a new CoAP-IoT anomaly detection dataset. Appl. Sci. 13(7), 4482. (2023).
Google Scholar
Nguyen, C. N., Lee, J., Hwang, S. & Kim, J. S. On the role of message broker middleware for many-task computing on a big-data platform. Cluster Comput. 22, 2527–2540. (2019).
Google Scholar
Zhang, M., Yue, P., Hu, L., Wu, H. & Zhang, F. An interoperable and service-oriented approach for real-time environmental simulation by coupling OGC WPS and SensorThings API. Environ. Modell. Softw. 165, 105722. (2023).
Google Scholar
Xie, Y., Wang, S. & Wang, B. Virtual network function placement with bounded migrations. Cluster Comput. 24(3), 2355–2366. (2021).
Google Scholar
Kastrinakis, D. & Petrakis, E. G. Video2Flink: Real-time video partitioning in Apache Flink and the cloud. Mach. Vision. Appl. 34(3), 42. (2023).
Google Scholar
Cheverda, V. et al. Digital twins of multiscale 3D heterogeneous geological objects: 3D simulations and seismic imaging of faults, fractures and caves. J. Phys. Conf. Ser. 1392, 012051. (2019).
Google Scholar
Geng, Y. et al. 3DGraphSeg: A unified graph representation- based point cloud segmentation framework for full-range high-speed railway environments. IEEE Trans. Ind. Inf. 19(12), 11430–11443. (2023).
Google Scholar
Hosamo, H. H., Nielsen, H. K., Kraniotis, D., Svennevig, P. R. & Svidt, K. Digital twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings. Energ. Buildings. 281, 112732. (2023).
Google Scholar
Zhang, X., Mancini, S. & Liu, F. Experimental and numerical investigation on effects of air compressibility on dynamic performance of the damaged ship. Ocean Eng. 287(1), 115837. (2023).
Google Scholar
Li, J., Liu, T., Zhu, G., Li, Y. & Xie, Y. Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods. Energy. 273, 127289. (2023).
Google Scholar
Wang, L., Liu, H., Chen, Z., Zhang, F. & Guo, L. A digital twin model of life-cycle rolling bearing with multiscale fault evolution combined with different scale local fault extension mechanism. Eng. Struct. 274, 115172. (2023).
Google Scholar
Dong, L., Hu, T., Yue, P., Meng, Q. & Ma, S. A product performance rapid simulation approach driven by digital twin data: Part 1. For variable product structures. Adv. Eng. Inform. 1(59), 102337. (2024).
Google Scholar
Liu, J. et al. CNC machine tool fault diagnosis integrated rescheduling approach supported by digital twin-driven interaction and cooperation framework. IEEE Access 9, 118801–118814. (2021).
Google Scholar
Zhang, Z., David, J. & Liu, J. Batch sizing control of a flow shop based on the entropy-function theorems. Expert Syst. Appl. 213, 118958. (2023).
Google Scholar
Shangguan, D., Chen, L. & Ding, J. A digital twin-based approach for the fault diagnosis and health monitoring of a complex satellite system. Symmetry 12(8), 1307. (2020).
Google Scholar
Tozlu, A., Kayabasi, E. & Ozcan, H. Thermoeconomic analysis of a low-temperature waste-energy assisted power and hydrogen plant at off-NG grid region. Sustain. Energy Technol. Assess. 52, 102104. (2022).
Google Scholar
Ma, J., Yuan, Y. & Chen, P. A fault prediction framework for Doubly-fed induction generator under time-varying operating conditions driven by digital twin. IET Electr. Power Appl. 17, 499–521. (2022).
Google Scholar
Turner, C. J. & Garn, W. Next generation DES simulation: a research agenda for human centric manufacturing systems. J. Ind. Inf. Integr. 28, 100354. (2022).
Google Scholar
Gao, D. et al. Intelligent instrument fault diagnosis and prediction system based on digital twin technology. J. Phys. Conf. Ser. 1983, 012106. (2021).
Google Scholar
Longo, F., Mirabelli, G., Nicoletti, L. & Solina, V. An ontology-based, general-purpose and Industry 4.0-ready architecture for supporting the smart operator (Part I-Mixed reality case). J. Manuf. Syst. 64, 594–612. (2022).
Google Scholar
Zhang, C. et al. A deep learning-enabled human-cyber-physical fusion method towards human-robot collaborative assembly. Rob. Comput. Integr. Manuf. 83, 102571. (2023).
Google Scholar
link