May 23, 2025
Digital twin-driven prognostics and health management for industrial assets
  • Omri, N., Al Masry, Z., Mairot, N., Giampiccolo, S. & Zerhouni, N. Industrial data management strategy towards an SME-oriented PHM. J. Manuf. Syst. 1(56), 23–36. (2020).

    Article 

    Google Scholar 

  • Zio, E. Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliab. Eng. Syst. Saf. 218, 108119. (2022).

    Article 

    Google Scholar 

  • Wang, J., Ye, L., Gao, R. X., Li, C. & Zhang, L. Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 57(12), 3920–3934. (2019).

    Article 

    Google Scholar 

  • Maddikunta, P. K. R. et al. Industry 50: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257. (2022).

    Article 

    Google Scholar 

  • Ogunsakin, R., Mehandjiev, N. & Marin, C. A. Towards adaptive digital twins architecture. Comput. Ind. 149, 103920. (2023).

    Article 

    Google Scholar 

  • Hu, X. et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Ind. Electron. M. 14(3), 65–91. (2020).

    Article 

    Google Scholar 

  • Cui, Z. et al. A review of digital twin technology for electromechanical products: Evolution focus throughout key lifecycle phases. J. Manuf. Syst. 70, 264–287. (2023).

    Article 

    Google Scholar 

  • Khalid, S. et al. A comprehensive review of emerging trends in aircraft structural prognostics and health management. Mathematics 11(18), 3837. (2023).

    Article 

    Google Scholar 

  • Yüce, C. et al. Prognostics and health management of wind energy infrastructure systems. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng. 8(2), 020801. (2022).

    Article 

    Google Scholar 

  • Hosamo, H. H., Nielsen, H. K., Alnmr, A. N., Svennevig, P. R. & Svidt, K. A review of the digital twin technology for fault detection in buildings. Front. Built. Environ. 8, 1013196. (2022).

    Article 

    Google Scholar 

  • Hodavand, F., Ramaji, I. J. & Sadeghi, N. Digital twin for fault detection and diagnosis of building operations: a systematic review. Buildings 13(6), 1426. (2023).

    Article 

    Google Scholar 

  • Jiménez Rios, A., Plevris, V. & Nogal, M. Bridge management through digital twin-based anomaly detection systems: a systematic review. Front. Built. Environ. 9, 1176621. (2023).

    Article 

    Google Scholar 

  • Gao, Z. & Odgaard, P. Real-time monitoring, fault prediction and health management for offshore wind turbine systems. Renew. Energy 218, 119258. (2023).

    Article 

    Google Scholar 

  • Wang, D. et al. The role of digital twin in optical communication: fault management, hardware configuration, and transmission simulation. IEEE Commun. Mag. 59, 133–139. (2021).

    Article 

    Google Scholar 

  • Tao, F., Xiao, B., Qi, Q., Cheng, J. & Ji, P. Digital twin modeling. J. Manuf. Syst. 64, 372–389. (2022).

    Article 

    Google Scholar 

  • Wang, J. et al. Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis. Reliab. Eng. Syst. Saf. 234, 109152. (2023).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing. Reliab. Eng. Syst. Saf. 234, 109186. (2023).

    Article 

    Google Scholar 

  • Xie, X. et al. Fault diagnosis method for bearing based on digital twin. Math. Probl. Eng. 2022, e2982746. (2022).

    Article 

    Google Scholar 

  • Cai, W., Zhang, Q. & Cui, J. A novel fault diagnosis method for denoising autoencoder assisted by digital twin. Comput. Intell. Neurosci. 2022, 1–8. (2022).

    Article 
    CAS 

    Google Scholar 

  • Guo, K., Wan, X., Liu, L., Gao, Z. & Yang, M. Fault diagnosis of intelligent production line based on digital twin and improved random forest. Appl. Sci. 11, 7733. (2021).

    Article 
    CAS 

    Google Scholar 

  • Xia, M. et al. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliab. Eng. Syst. Saf. 215, 107938. (2021).

    Article 

    Google Scholar 

  • Deebak, B. D. & Al-Turjman, F. Digital-twin assisted: Fault diagnosis using deep transfer learning for machining tool condition. Int. J. Intell. Syst. 37(12), 10289–10316. (2022).

    Article 

    Google Scholar 

  • Ma, L., Jiang, B., Xiao, L. & Lu, N. Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis. Mech. Syst. Signal Process. 200, 110490. (2023).

    Article 

    Google Scholar 

  • Ma, X., Chen, F., Wang, Z., Li, K. & Tian, C. Digital twin model for chiller fault diagnosis based on SSAE and transfer learning. Build. Environ. 243, 110718. (2023).

    Article 

    Google Scholar 

  • Bhatti, G., Mohan, H. & Raja, S. R. Towards the future of smart electric vehicles: Digital twin technology. Renew. Sustain. Energy Rev. 141, 110801. (2021).

    Article 

    Google Scholar 

  • Lv, Z., Chen, D., Feng, H., Zhu, H. & Lv, H. Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics. IEEE Trans. Intell. Transp. Syst. 23, 25106–25114. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Interactive real-time monitoring and information traceability for complex aircraft assembly field based on digital twin. IEEE Trans. Industr. Inform. 19(9), 9745–9756. (2023).

    Article 

    Google Scholar 

  • Yang, B., Lei, Y., Li, X. & Li, N. Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization. Expert Syst. Appl. 244, 122997. (2024).

    Article 

    Google Scholar 

  • Xue, R., Zhang, P., Huang, Z. & Wang, J. Digital twin-driven fault diagnosis for CNC machine tool. Int. J. Adv. Manuf. Technol. 131, 5457–5470. (2022).

    Article 

    Google Scholar 

  • Jiao, J., Zhao, M., Lin, J. & Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing 417, 36–63. (2020).

    Article 

    Google Scholar 

  • Tao, F., Zhang, H., Liu, A. & Nee, A. Y. C. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inf. 15(4), 2405–2415. (2018).

    Article 

    Google Scholar 

  • Tao, F. et al. Digital twin-driven product design framework. Int. J. Prod. Res. 57(12), 3935–3953. (2019).

    Article 

    Google Scholar 

  • Lu, Y. et al. Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot Comput. Integr. Manuf. 61, 101837. (2020).

    Article 

    Google Scholar 

  • Madni, A. M., Madni, C. C. & Lucero, S. D. Leveraging digital twin technology in model-based systems engineering. Systems 7(1), 7. (2019).

    Article 

    Google Scholar 

  • Liu, Y. et al. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE access. 7, 49088–49101. (2019).

    Article 

    Google Scholar 

  • Leng, J. et al. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. J. Amb. Intel. Hum. Comp. 10, 1155–1166. (2019).

    Article 

    Google Scholar 

  • Corral-Acero, J. et al. The ‘Digital Twin’to enable the vision of precision cardiology. Ur. Heart J. 41(48), 4556–4564. (2020).

    Article 

    Google Scholar 

  • Pan, Y. & Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Automat. Constr. 124, 103564. (2021).

    Article 

    Google Scholar 

  • White, G., Zink, A., Codecá, L. & Clarke, S. A digital twin smart city for citizen feedback. Cities. 110, 103064. (2021).

    Article 

    Google Scholar 

  • Liu, M., Fang, S., Dong, H. & Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 58, 346–361. (2021).

    Article 

    Google Scholar 

  • Liu, C., Vengayil, H., Zhong, R. Y. & Xu, X. A systematic development method for cyber-physical machine tools. J. Manuf. Syst. 48, 13–24. (2018).

    Article 

    Google Scholar 

  • Martins, A. B., Farinha, J. T. & Cardoso, A. M. Calibration and certification of industrial sensors – a global review. WSEAS Trans. Syst. Control 15, 394–416. (2020).

    Article 

    Google Scholar 

  • Martins, A., Fonseca, I., Farinha, J. T., Reis, J. & Cardoso, A. J. M. Online monitoring of sensor calibration status to support condition-based maintenance. Sensors 23(5), 2402. (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, W., Wang, T. & Chu, F. A novel Ramanujan digital twin for motor periodic fault monitoring and detection. IEEE Trans. Ind. Inform. 23(19), 11564–11572. (2023).

    Article 

    Google Scholar 

  • Yu, X., Yang, Y., Du, M., He, Q. & Peng, Z. Dynamic model-embedded intelligent machine fault diagnosis without fault data. J IEEE Trans. Ind. Inf. 19(12), 11466–11476. (2023).

    Article 

    Google Scholar 

  • Song, Z., Shi, H., Bai, X. & Li, G. Digital twin-assisted fault diagnosis system for robot joints with insufficient data. J. Field Rob. 40, 258–271. (2022).

    Article 

    Google Scholar 

  • Zhang, T. et al. Intelligent fault diagnosis of machines with small & imbalanced data: a state-of-the-art review and possible extensions. ISA. T. 119, 152–171. (2022).

    Article 

    Google Scholar 

  • Wang, Y., Tao, F., Zhang, M., Wang, L. & Zuo, Y. Digital twin enhanced fault prediction for the autoclave with insufficient data. J. Manuf. Syst. 60, 350–359. (2021).

    Article 

    Google Scholar 

  • Yan, S. et al. Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization. Reliab. Eng. Syst. Saf. 239, 109522. (2023).

    Article 

    Google Scholar 

  • Ma, X., Qi, Q. & Tao, F. An ontology-based data-model coupling approach for digital twin. Rob. Comput. Integr. Manuf. 86, 102649. (2024).

    Article 

    Google Scholar 

  • Xia, J., Huang, R., Chen, Z., He, G. & Li, W. A novel digital twin-driven approach based on physical-virtual data fusion for gearbox fault diagnosis. Reliab. Eng. Syst. Saf. 240, 109542. (2023).

    Article 

    Google Scholar 

  • Yin, T. et al. Knowledge and data dual-driven transfer network for industrial robot fault diagnosis. Mech. Syst. Signal Process. 182, 109597. (2023).

    Article 

    Google Scholar 

  • Lv, J., Li, X., Sun, Y., Zheng, Y. & Bao, J. A bio-inspired LIDA cognitive-based digital twin architecture for unmanned maintenance of machine tools. Robot Comput. Integr. Manuf. 80, 102489. (2023).

    Article 

    Google Scholar 

  • Xiao, B., Qi, Q. & Tao, F. Multi-dimensional modeling and abnormality handling of digital twin shop floor. J. Ind. Inf. Integr. 35, 100492. (2023).

    Article 

    Google Scholar 

  • Zheng, Y., Yang, S. & Cheng, H. An application framework of digital twin and its case study. J. Amb. Intel. Hum. Comp. 10, 1141–1153. (2019).

    Article 

    Google Scholar 

  • Soualhi, M. et al. Dealing with prognostics uncertainties: Combination of direct and recursive remaining useful life estimations. Comput. Ind. 144, 103766. (2023).

    Article 

    Google Scholar 

  • Jeong, S. et al. A novel graph-based missing values imputation method for industrial lubricant data. Comput. Ind. 150, 103937. (2023).

    Article 

    Google Scholar 

  • Zhang, Z. et al. Digital twin-enabled grasp outcomes assessment for unknown objects using visual-tactile fusion perception. Rob. Comput. Integr. Manuf. 84, 102601. (2023).

    Article 

    Google Scholar 

  • Xi, D., Hou, L., Luo, J., Liu, F. & Qin, Y. The meta-defect-detection system for gear pitting based on digital twin. Adv. Eng. Inf. 56, 102003. (2023).

    Article 

    Google Scholar 

  • Wang, P. & Luo, M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. J. Manuf. Syst. 58, 16–32 (2021).

    Article 

    Google Scholar 

  • Hu, M. et al. Digital twin model of gas turbine and its application in warning of performance fault. Chin. J. Aeronaut. 36(3), 449–470. (2022).

    Article 

    Google Scholar 

  • Lohman, W. et al. Building digital twins of cities using the Inter Model Broker framework. Future Generation Comput. Syst. 1(148), 501–513 (2023).

    Article 

    Google Scholar 

  • Xing, Y. et al. An online learning assisted packet scheduler for MPTCP in mobile networks. IEEE/ACM Trans. Netw. 31(5), 2297–2312. (2023).

    Article 

    Google Scholar 

  • Jiang, J. et al. A digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis. Sci. Rep. 12, 675. (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y., Yuan, B., Xu, S. & Han, T. Fault diagnosis of permanent magnet synchronous motor of coal mine belt conveyor based on digital twin and ISSA-RF. Processes 10, 1679. (2022).

    Article 

    Google Scholar 

  • Wei, Y., Hu, T., Dong, L. & Ma, S. Digital twin-driven manufacturing equipment development. Rob. Comput. Integr. Manuf. 83, 102557. (2023).

    Article 

    Google Scholar 

  • Vered, Y. & Elliott, S. J. The use of digital twins to remotely update feedback controllers for the motion control of nonlinear dynamic systems. Mech. Syst. Signal Process. 185, 109770. (2023).

    Article 

    Google Scholar 

  • Rodríguez, F., Chicaiza, W. D., Sánchez, A. & Escaño, J. M. Updating digital twins: Methodology for data accuracy quality control using machine learning techniques. Comput. Ind. 151, 103958. (2023).

    Article 

    Google Scholar 

  • Regis, A., Arroyave-Tobon, S., Linares, J.-M. & Mermoz, E. Physic-based vs data-based digital twins for bush bearing wear diagnostic. Wear. 526–7, 204888. (2023).

    Article 
    CAS 

    Google Scholar 

  • Bhatt, S. et al. Attribute-based access control for AWS internet of things and secure industries of the future. IEEE Access. 9, 107200–107223. (2021).

    Article 

    Google Scholar 

  • Palumbo, F. et al. Characterization and analysis of cloud-to-user latency: the case of Azure and AWS. Comput. Netw. 15(184), 107693. (2021).

    Article 

    Google Scholar 

  • Yao, S., Kang, Q., Zhou, M., Rawa, J. M. & Abusorrah, A. A survey of transfer learning for machinery diagnostics and prognostics. Artif. Intell. Rev. 56(4), 2871–2922. (2023).

    Article 

    Google Scholar 

  • Naseri, F. et al. Digital twin of electric vehicle battery systems: comprehensive review of the use cases, requirements, and platforms. Renew. Sustain. Energy Rev. 179, 113280. (2023).

    Article 

    Google Scholar 

  • Alves, R. G., Maia, R. F. & Lima, F. Development of a digital twin for smart farming: Irrigation management system for water saving. J. Cleaner. Prod. 388, 135920. (2023).

    Article 

    Google Scholar 

  • Seo, J., Kim, K., Seo, S. & Park, S. DARK: deep automatic Redis knobs tuning system depending on the persistence method. Expert Syst. Appl. 221, 119697. (2023).

    Article 

    Google Scholar 

  • Lilis, G. & Kayal, M. A secure and distributed message oriented middleware for smart building applications. Autom. Constr. 86, 163–175. (2017).

    Article 

    Google Scholar 

  • Bender, A. et al. A flexible system architecture for acquisition and storage of naturalistic driving data. IEEE Trans. Intell. Transp. Syst. 17(6), 1748–1761. (2016).

    Article 

    Google Scholar 

  • Uçak, E., Karagümüş, E. & Şener, C. A scalable platform for big data analysis in public transport. Concurr. Comput. 34(9), e6534. (2022).

    Article 

    Google Scholar 

  • Vigoya, L., Pardal, A., Fernandez, D. & Carneiro, V. Application of machine learning algorithms for the validation of a new CoAP-IoT anomaly detection dataset. Appl. Sci. 13(7), 4482. (2023).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, C. N., Lee, J., Hwang, S. & Kim, J. S. On the role of message broker middleware for many-task computing on a big-data platform. Cluster Comput. 22, 2527–2540. (2019).

    Article 

    Google Scholar 

  • Zhang, M., Yue, P., Hu, L., Wu, H. & Zhang, F. An interoperable and service-oriented approach for real-time environmental simulation by coupling OGC WPS and SensorThings API. Environ. Modell. Softw. 165, 105722. (2023).

    Article 

    Google Scholar 

  • Xie, Y., Wang, S. & Wang, B. Virtual network function placement with bounded migrations. Cluster Comput. 24(3), 2355–2366. (2021).

    Article 

    Google Scholar 

  • Kastrinakis, D. & Petrakis, E. G. Video2Flink: Real-time video partitioning in Apache Flink and the cloud. Mach. Vision. Appl. 34(3), 42. (2023).

    Article 

    Google Scholar 

  • Cheverda, V. et al. Digital twins of multiscale 3D heterogeneous geological objects: 3D simulations and seismic imaging of faults, fractures and caves. J. Phys. Conf. Ser. 1392, 012051. (2019).

    Article 
    CAS 

    Google Scholar 

  • Geng, Y. et al. 3DGraphSeg: A unified graph representation- based point cloud segmentation framework for full-range high-speed railway environments. IEEE Trans. Ind. Inf. 19(12), 11430–11443. (2023).

    Article 

    Google Scholar 

  • Hosamo, H. H., Nielsen, H. K., Kraniotis, D., Svennevig, P. R. & Svidt, K. Digital twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings. Energ. Buildings. 281, 112732. (2023).

    Article 

    Google Scholar 

  • Zhang, X., Mancini, S. & Liu, F. Experimental and numerical investigation on effects of air compressibility on dynamic performance of the damaged ship. Ocean Eng. 287(1), 115837. (2023).

    Article 

    Google Scholar 

  • Li, J., Liu, T., Zhu, G., Li, Y. & Xie, Y. Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods. Energy. 273, 127289. (2023).

    Article 

    Google Scholar 

  • Wang, L., Liu, H., Chen, Z., Zhang, F. & Guo, L. A digital twin model of life-cycle rolling bearing with multiscale fault evolution combined with different scale local fault extension mechanism. Eng. Struct. 274, 115172. (2023).

    Article 

    Google Scholar 

  • Dong, L., Hu, T., Yue, P., Meng, Q. & Ma, S. A product performance rapid simulation approach driven by digital twin data: Part 1. For variable product structures. Adv. Eng. Inform. 1(59), 102337. (2024).

    Article 

    Google Scholar 

  • Liu, J. et al. CNC machine tool fault diagnosis integrated rescheduling approach supported by digital twin-driven interaction and cooperation framework. IEEE Access 9, 118801–118814. (2021).

    Article 

    Google Scholar 

  • Zhang, Z., David, J. & Liu, J. Batch sizing control of a flow shop based on the entropy-function theorems. Expert Syst. Appl. 213, 118958. (2023).

    Article 

    Google Scholar 

  • Shangguan, D., Chen, L. & Ding, J. A digital twin-based approach for the fault diagnosis and health monitoring of a complex satellite system. Symmetry 12(8), 1307. (2020).

    Article 
    ADS 

    Google Scholar 

  • Tozlu, A., Kayabasi, E. & Ozcan, H. Thermoeconomic analysis of a low-temperature waste-energy assisted power and hydrogen plant at off-NG grid region. Sustain. Energy Technol. Assess. 52, 102104. (2022).

    Article 

    Google Scholar 

  • Ma, J., Yuan, Y. & Chen, P. A fault prediction framework for Doubly-fed induction generator under time-varying operating conditions driven by digital twin. IET Electr. Power Appl. 17, 499–521. (2022).

    Article 

    Google Scholar 

  • Turner, C. J. & Garn, W. Next generation DES simulation: a research agenda for human centric manufacturing systems. J. Ind. Inf. Integr. 28, 100354. (2022).

    Article 

    Google Scholar 

  • Gao, D. et al. Intelligent instrument fault diagnosis and prediction system based on digital twin technology. J. Phys. Conf. Ser. 1983, 012106. (2021).

    Article 

    Google Scholar 

  • Longo, F., Mirabelli, G., Nicoletti, L. & Solina, V. An ontology-based, general-purpose and Industry 4.0-ready architecture for supporting the smart operator (Part I-Mixed reality case). J. Manuf. Syst. 64, 594–612. (2022).

    Article 

    Google Scholar 

  • Zhang, C. et al. A deep learning-enabled human-cyber-physical fusion method towards human-robot collaborative assembly. Rob. Comput. Integr. Manuf. 83, 102571. (2023).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *