October 6, 2024
Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control
  • Jacob, S. T. et al. Ebola virus disease. Nat. Rev. Dis. Prim. 6, 13 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kortepeter, M. G., Dierberg, K., Shenoy, E. S. & Cieslak, T. J. Marburg virus disease: A summary for clinicians. Int. J. Infect. Dis. 99, 233–242 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garry, R. F. Lassa fever – the road ahead. Nat. Rev. Microbiol 21, 87–96 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raabe, V., Mehta, A. K. & Evans, J. D. Lassa Virus Infection: a Summary for Clinicians. Int. J. Infect. Dis. 119, 187–200 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hawman, D. W. & Feldmann, H. Crimean-Congo haemorrhagic fever virus. Nat. Rev. Microbiol 21, 463–477 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Connors, K. A. & Hartman, A. L. Advances in Understanding Neuropathogenesis of Rift Valley Fever Virus. Annu. Rev. Virol. 9, 437–450 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. Y. et al. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect. Dis. Poverty 9, 99 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hui, D. S. C. & Zumla, A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect. Dis. Clin. North Am. 33, 869–889 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ang, B. S. P., Lim, T. C. C. & Wang, L. Nipah Virus Infection. J. Clin. Microbiol. 56, e01875–01817 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musso, D. & Gubler, D. J. Zika Virus. Clin. Microbiol. Rev. 29, 487–524 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fathi, A., Dahlke, C. & Addo, M. M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccin Immunother. 15, 2269–2285 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedrich, M. J. WHO’s Blueprint List of Priority Diseases. JAMA 319, 1973 (2018).

    PubMed 

    Google Scholar 

  • Mehand, M. S., Al-Shorbaji, F., Millett, P. & Murgue, B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antivir. Res. 159, 63–67 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siragam, V., Wong, G. & Qiu, X. G. Animal models for filovirus infections. Zool. Res. 39, 15–24 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, C. et al. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct. Target Ther. 7, 220 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banadyga, L., Wong, G. & Qiu, X. Small Animal Models for Evaluating Filovirus Countermeasures. ACS Infect. Dis. 4, 673–685 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feldmann, H., Sprecher, A. & Geisbert, T. W. Ebola. N. Engl. J. Med. 382, 1832–1842 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ghosh, S., Saha, A., Samanta, S. & Saha, R. P. Genome structure and genetic diversity in the Ebola virus. Curr. Opin. Pharm. 60, 83–90 (2021).

    Article 
    CAS 

    Google Scholar 

  • Milligan, J. C. et al. Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell 185, 995–1007.e18 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bär, S., Takada, A., Kawaoka, Y. & Alizon, M. Detection of cell-cell fusion mediated by Ebola virus glycoproteins. J. Virol. 80, 2815–2822 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beniac, D. R. & Booth, T. F. Structure of the Ebola virus glycoprotein spike within the virion envelope at 11Å resolution. Sci. Rep. 7, 46374 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuroda, M. et al. Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus. J. Virol. 89, 6481–6493 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. & Hensley, L. E. Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev. Mol. Med. 6, 1–24 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Geisbert, T. W. et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 163, 2347–2370 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, G. et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol. 77, 1337–1346 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takada, A. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–2947 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aleksandrowicz, P. et al. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J. Infect. Dis. 204, S957–S967 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nanbo, A. et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 6, e1001121 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 164, 258–268 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson, M. A., Lee, M. S. & Yeh, I. C. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations. J. Comput. Chem. 38, 1342–1352 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noyori, O. et al. Suppression of Fas-mediated apoptosis via steric shielding by filovirus glycoproteins. Biochem. Biophys. Res. Commun. 441, 994–998 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noyori, O. et al. Differential potential for envelope glycoprotein-mediated steric shielding of host cell surface proteins among filoviruses. Virology 446, 152–161 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Z. et al. Ebola virus VP35 perturbs type I interferon signaling to facilitate viral replication. Virol. Sin. 38, 922–930 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martines, R. B. et al. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J. Pathol. 235, 153–174 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez, A. et al. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J. Virol. 72, 6442–6447 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito, H., Watanabe, S., Takada, A. & Kawaoka, Y. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J. Virol. 75, 1576–1580, (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kindzelskii, A. L. et al. Ebola virus secretory glycoprotein (sGP) diminishes Fc gamma RIIIB-to-CR3 proximity on neutrophils. J. Immunol. 164, 953–958 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wahl-Jensen, V. M. et al. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J. Virol. 79, 10442–10450 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, Y. & Gojobori, T. The origin and evolution of Ebola and Marburg viruses. Mol. Biol. Evol. 14, 800–806, (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barrette, R. W. et al. Discovery of swine as a host for the Reston ebolavirus. Science 325, 204–206 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Y. et al. Reston virus in domestic pigs in China. Arch. Virol. 159, 1129–1132 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swanepoel, R. et al. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 13, 1847–1851 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Towner, J. S. et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 5, e1000536 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gowen, B. B. & Holbrook, M. R. Animal models of highly pathogenic RNA viral infections: hemorrhagic fever viruses. Antivir. Res. 78, 79–90 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Towner, J. S. et al. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol. 80, 6497–6516 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahanty, S. & Bray, M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect. Dis. 4, 487–498, (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robinson, J. E. et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat. Commun. 7, 11544 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brauburger, K., Hume, A. J., Mühlberger, E. & Olejnik, J. Forty-five years of Marburg virus research. Viruses 4, 1878–1927 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shifflett, K. & Marzi, A. Marburg virus pathogenesis – differences and similarities in humans and animal models. Virol. J. 16, 165 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362, 1953–1958 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Warfield, K. L. et al. Development and characterization of a mouse model for Marburg hemorrhagic fever. J. Virol. 83, 6404–6415 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bray, M. The role of the Type I interferon response in the resistance of mice to filovirus infection. J. Gen. Virol. 82, 1365–1373 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hofmann, H. & Kunz, C. [A strain of “Marburg virus” (Rhabdovirus simiae) pathogenic to mice]. Arch. Gesamt. Virusforsch. 32, 244–248, (1970).

    Article 
    CAS 

    Google Scholar 

  • Moe, J. B., Lambert, R. D. & Lupton, H. W. Plaque assay for Ebola virus. J. Clin. Microbiol 13, 791–793 (1981).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banadyga, L., Dolan, M. A. & Ebihara, H. Rodent-Adapted Filoviruses and the Molecular Basis of Pathogenesis. J. Mol. Biol. 428, 3449–3466 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bray, M. et al. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 179, S248–S258 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Ebihara, H. et al. Molecular determinants of Ebola virus virulence in mice. PLoS Pathog. 2, e73 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramanan, P. et al. Filoviral immune evasion mechanisms. Viruses 3, 1634–1649 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibb, T. R. et al. Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J. Comp. Pathol. 125, 233–242 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geisbert, T. W. et al. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J. Infect. Dis. 188, 1618–1629 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villinger, F. et al. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J. Infect. Dis. 179, S188–S191 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baize, S. et al. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat. Med. 5, 423–426 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raymond, J., Bradfute, S. & Bray, M. Filovirus infection of STAT-1 knockout mice. J. Infect. Dis. 204, S986–S990 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lever, M. S. et al. Lethality and pathogenesis of airborne infection with filoviruses in A129 α/β −/− interferon receptor-deficient mice. J. Med. Microbiol. 61, 8–15 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Escaffre, O. et al. STAT-1 Knockout Mice as a Model for Wild-Type Sudan Virus (SUDV). Viruses 13, 1388 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warfield, K. L. et al. Development of a model for marburgvirus based on severe-combined immunodeficiency mice. Virol. J. 4, 108 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, X. et al. Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus. J. Virol. 88, 12703–12714 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, H. et al. Deep-sequencing of Marburg virus genome during sequential mouse passaging and cell-culture adaptation reveals extensive changes over time. Sci. Rep. 7, 3390 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valmas, C. & Basler, C. F. Marburg virus VP40 antagonizes interferon signaling in a species-specific manner. J. Virol. 85, 4309–4317 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bird, B. H. et al. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease. J. Infect. Dis. 213, 703–711 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Escudero-Pérez, B. et al. Comparative pathogenesis of Ebola virus and Reston virus infection in humanized mice. JCI Insight 4, e126070 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasmussen, A. L. et al. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346, 987–991 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavender, K. J. et al. Pathogenicity of Ebola and Marburg Viruses Is Associated With Differential Activation of the Myeloid Compartment in Humanized Triple Knockout-Bone Marrow, Liver, and Thymus Mice. J. Infect. Dis. 218, S409–s417 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradfute, S. B. et al. Lymphocyte death in a mouse model of Ebola virus infection. J. Infect. Dis. 196, S296–S304 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Bradfute, S. B. et al. Mechanisms and consequences of ebolavirus-induced lymphocyte apoptosis. J. Immunol. 184, 327–335 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ebihara, H. et al. A Syrian golden hamster model recapitulating ebola hemorrhagic fever. J. Infect. Dis. 207, 306–318 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ebihara, H. et al. Host response dynamics following lethal infection of rhesus macaques with Zaire ebolavirus. J. Infect. Dis. 204, S991–S999 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atkins, C. et al. Natural History and Pathogenesis of Wild-Type Marburg Virus Infection in STAT2 Knockout Hamsters. J. Infect. Dis. 218, S438–s447 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marzi, A. et al. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever. Sci. Rep. 6, 39214 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowen, E. T. et al. Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent. Lancet 1, 571–573 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Connolly, B. M. et al. Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 179, S203–S217 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Ryabchikova, E. et al. Ebola virus infection in guinea pigs: presumable role of granulomatous inflammation in pathogenesis. Arch. Virol. 141, 909–921 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Subbotina, E., Dadaeva, A., Kachko, A. & Chepurnov, A. Genetic factors of Ebola virus virulence in guinea pigs. Virus Res. 153, 121–133 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cross, R. W. et al. Modeling the Disease Course of Zaire ebolavirus Infection in the Outbred Guinea Pig. J. Infect. Dis. 212, S305–S315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, G. et al. Development and Characterization of a Guinea Pig-Adapted Sudan Virus. J. Virol. 90, 392–399 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simpson, D. I., Zlotnik, I. & Rutter, D. A. Vervet monkey disease. Experiment infection of guinea pigs and monkeys with the causative agent. Br. J. Exp. Pathol. 49, 458–464 (1968).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, R. W. et al. Comparison of the Pathogenesis of the Angola and Ravn Strains of Marburg Virus in the Outbred Guinea Pig Model. J. Infect. Dis. 212, S258–S270 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hevey, M. et al. Antigenicity and vaccine potential of Marburg virus glycoprotein expressed by baculovirus recombinants. Virology 239, 206–216 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fenollar, F. et al. Mink, SARS-CoV-2, and the Human-Animal Interface. Front. Microbiol. 12, 663815 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, R. W. et al. The Domestic Ferret (Mustela putorius furo) as a Lethal Infection Model for 3 Species of Ebolavirus. J. Infect. Dis. 214, 565–569 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, G. et al. The Makona Variant of Ebola Virus Is Highly Lethal to Immunocompromised Mice and Immunocompetent Ferrets. J. Infect. Dis. 218, S466–S470 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozak, R. et al. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease. J. Virol. 90, 9209–9223 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brasel, T. et al. Mucosal Challenge Ferret Models of Ebola Virus Disease. Pathogens 10, 292 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kroeker, A. et al. Characterization of Sudan Ebolavirus infection in ferrets. Oncotarget 8, 46262–46272 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burk, R. et al. Neglected filoviruses. FEMS Microbiol. Rev. 40, 494–519 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. & Jahrling, P. B. Use of immunoelectron microscopy to show Ebola virus during the 1989 United States epizootic. J. Clin. Pathol. 43, 813–816 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, F. et al. Characterization of Reston virus infection in ferrets. Antivir. Res. 165, 1–10 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schiffman, Z. et al. Taï Forest Virus Does Not Cause Lethal Disease in Ferrets. Microorganisms 9, 213 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, R. W. et al. Marburg and Ravn Viruses Fail to Cause Disease in the Domestic Ferret (Mustela putorius furo). J. Infect. Dis. 218, S448–S452 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, G. et al. Marburg and Ravn Virus Infections Do Not Cause Observable Disease in Ferrets. J. Infect. Dis. 218, S471–S474 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. X. et al. Ebola Virus Disease Features Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome in the Rhesus Macaque Model. J. Infect. Dis. 228, 371–382 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warren, T. et al. Characterization of Ebola Virus Disease (EVD) in Rhesus Monkeys for Development of EVD Therapeutics. Viruses 12, 92 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worwa, G. et al. Persistent intraocular Ebola virus RNA is associated with severe uveitis in a convalescent rhesus monkey. Commun. Biol. 5, 1204 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. et al. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab. Invest. 80, 171–186 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher-Hoch, S. P. et al. Haematological and biochemical monitoring of Ebola infection in rhesus monkeys: implications for patient management. Lancet 2, 1055–1058 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kortepeter, M. G. et al. Real-time monitoring of cardiovascular function in rhesus macaques infected with Zaire ebolavirus. J. Infect. Dis. 204, S1000–S1010 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Baskerville, A., Fisher-Hoch, S. P., Neild, G. H. & Dowsett, A. B. Ultrastructural pathology of experimental Ebola haemorrhagic fever virus infection. J. Pathol. 147, 199–209 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hensley, L. E., Young, H. A., Jahrling, P. B. & Geisbert, T. W. Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol. Lett. 80, 169–179 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bennett, R. S. et al. Nonhuman Primate Models of Ebola Virus Disease. Curr. Top. Microbiol. Immunol. 411, 171–193 (2017).

    PubMed 

    Google Scholar 

  • Woolsey, C. et al. Natural history of infection in rhesus and cynomolgus macaques. Emerg. Microbes Infect. 11, 1635–1646 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zumbrun, E. E. et al. A characterization of aerosolized Sudan virus infection in African green monkeys, cynomolgus macaques, and rhesus macaques. Viruses 4, 2115–2136 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilchuk, P. et al. Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. J. Infect. Dis. 218, S565–S573 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woolsey, C. et al. Bundibugyo ebolavirus Survival Is Associated with Early Activation of Adaptive Immunity and Reduced Myeloid-Derived Suppressor Cell Signaling. mBio 12, e0151721 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nicholas, V. V. et al. Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques. J. Infect. Dis. 218, S458–S465 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, K. L. et al. Temporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus Macaques. J. Virol. 89, 9875–9885 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensley, L. E. et al. Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J. Infect. Dis. 204, S1021–S1031 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glaze, E. R., Roy, M. J., Dalrymple, L. W. & Lanning, L. L. A Comparison of the Pathogenesis of Marburg Virus Disease in Humans and Nonhuman Primates and Evaluation of the Suitability of These Animal Models for Predicting Clinical Efficacy under the ‘Animal Rule’. Comp. Med. 65, 241–259 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Speranza, E. et al. A conserved transcriptional response to intranasal Ebola virus exposure in nonhuman primates prior to onset of fever. Sci. Transl. Med. 10, eaaq1016 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jankeel, A. et al. Early Transcriptional Changes within Liver, Adrenal Gland, and Lymphoid Tissues Significantly Contribute to Ebola Virus Pathogenesis in Cynomolgus Macaques. J. Virol. 94, e00250–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinski, A. N., Maroney, K. J., Marzi, A. & Messaoudi, I. Distinct transcriptional responses to fatal Ebola virus infection in cynomolgus and rhesus macaques suggest species-specific immune responses. Emerg. Microbes Infect. 10, 1320–1330 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stefan, C. P. et al. Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 9, 665 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alfson, K. J. et al. Development of a Lethal Intranasal Exposure Model of Ebola Virus in the Cynomolgus Macaque. Viruses 9, 319 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnston, S. C. et al. Delayed Disease in Cynomolgus Macaques Exposed to Ebola Virus by an Intranasal Route. Front. Immunol. 12, 709772 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, N. J. et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424, 681–684 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reed, D. S. et al. Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: differences in disease course and clinical pathology. Microbes Infect. 13, 930–936 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Mire, C. E. et al. Oral and Conjunctival Exposure of Nonhuman Primates to Low Doses of Ebola Makona Virus. J. Infect. Dis. 214, S263–S267 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, D. M. et al. Characterization of Ebola Virus Mucosal Challenge Routes in Cynomolgus Macaques. J. Virol. 97, e0188822 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Marzi, A. et al. Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain. Emerg. Infect. Dis. 21, 1777–1783 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, G. et al. Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques. J. Infect. Dis. 214, S281–S289 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alfson, K. J. et al. Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development. Vaccines 10, 1723 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W., Strong, J. E. & Feldmann, H. Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection. J. Infect. Dis. 212, S91–S97 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McElroy, A. K. et al. Ebola hemorrhagic Fever: novel biomarker correlates of clinical outcome. J. Infect. Dis. 210, 558–566 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wauquier, N. et al. Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl. Trop. Dis. 4, e837 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henn, V. et al. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98, 1047–1054 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alfson, K. J. et al. Intramuscular Exposure of to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus. Viruses 10, 642 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trefry, J. C. et al. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material. Viruses 7, 6739–6754 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alfson, K. J. et al. Development of a Well-Characterized Cynomolgus Macaque Model of Marburg Virus Disease for Support of Vaccine and Therapy Development. Vaccines 10, 1314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensley, L. E. et al. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus Species. PLoS Pathog. 6, e1000904 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahrling, P. B. et al. Experimental infection of cynomolgus macaques with Ebola-Reston filoviruses from the 1989-1990 U.S. epizootic. Arch. Virol. Suppl. 11, 115–134 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Taniguchi, S. et al. Analysis of the humoral immune responses among cynomolgus macaque naturally infected with Reston virus during the 1996 outbreak in the Philippines. BMC Vet. Res. 8, 189 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutchinson, K. L. et al. Multiplex analysis of cytokines in the blood of cynomolgus macaques naturally infected with Ebola virus (Reston serotype). J. Med. Virol. 65, 561–566 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ikegami, T. et al. Histopathology of natural Ebola virus subtype Reston infection in cynomolgus macaques during the Philippine outbreak in 1996. Exp. Anim. 51, 447–455 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geisbert, T. W. et al. Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus. J. Virol. 83, 7296–7304 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comer, J. E. et al. Natural History of Marburg Virus Infection to Support Medical Countermeasure Development. Viruses 14, 2291 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryabchikova, E. I., Kolesnikova, L. V. & Luchko, S. V. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J. Infect. Dis. 179, S199–S202 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Carrion, R. et al. A small nonhuman primate model for filovirus-induced disease. Virology 420, 117–124 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smither, S. J. et al. Experimental Respiratory Infection of Marmosets (Callithrix jacchus) With Ebola Virus Kikwit. J. Infect. Dis. 212, S336–S345 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Perry, D. L., Bollinger, L. & White, G. L. The Baboon (Papio spp.) as a model of human Ebola virus infection. Viruses 4, 2400–2416 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ignatiev, G. M., Dadaeva, A. A., Luchko, S. V. & Chepurnov, A. A. Immune and pathophysiological processes in baboons experimentally infected with Ebola virus adapted to guinea pigs. Immunol. Lett. 71, 131–140 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McWilliams, I. L. et al. Pseudovirus rVSVΔG-ZEBOV-GP Infects Neurons in Retina and CNS, Causing Apoptosis and Neurodegeneration in Neonatal Mice. Cell Rep. 26, 1718–1726.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, W. et al. Establishment and application of a surrogate model for human Ebola virus disease in BSL-2 laboratory. Virol. Sin. 39, 434–446 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H.-N. et al. Characterization of the therapeutic effect of antibodies targeting the Ebola glycoprotein using a novel BSL2-compliant rVSVΔG-EBOV-GP infection model. Emerg. Microbes Infect. 10, 2076–2089 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saito, T. et al. A Surrogate Animal Model for Screening of Ebola and Marburg Glycoprotein-Targeting Drugs Using Pseudotyped Vesicular Stomatitis Viruses. Viruses 12, 923 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, S. M. et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 11, 786–790 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qiu, X. et al. Mucosal immunization of cynomolgus macaques with the VSVDeltaG/ZEBOVGP vaccine stimulates strong ebola GP-specific immune responses. PLoS One 4, e5547 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Menicucci, A. R. et al. Antiviral Innate Responses Induced by VSV-EBOV Vaccination Contribute to Rapid Protection. mBio 10, e00597–00519 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huttner, A. et al. Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study. Lancet Infect. Dis. 18, 738–748 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agnandji, S. T. et al. Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe. N. Engl. J. Med. 374, 1647–1660, (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Regules, J. A. et al. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine. N. Engl. J. Med. 376, 330–341 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 389, 505–518 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callaway, E. Make Ebola a thing of the past’: first vaccine against deadly virus approved. Nature 575, 425–426 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, S. et al. An Adenovirus Vaccine Expressing Ebola Virus Variant Makona Glycoprotein Is Efficacious in Guinea Pigs and Nonhuman Primates. J. Infect. Dis. 214, S326–S332 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, F. C. et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet 385, 2272–2279 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lihua, W. et al. Open-label phase I clinical trial of Ad5-EBOV in Africans in China. Hum. Vaccin Immunother. 13, 2078–2085 (2017).

    Article 

    Google Scholar 

  • Li, J. X. et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Glob. Health 5, e324–e334 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, F.-C. et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 389, 621–628 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stanley, D. A. et al. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat. Med. 20, 1126–1129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ledgerwood, J. E. et al. Chimpanzee Adenovirus Vector Ebola Vaccine. N. Engl. J. Med. 376, 928–938 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ewer, K. et al. A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA. N. Engl. J. Med. 374, 1635–1646, (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tapia, M. D. et al. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 16, 31–42 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dolzhikova, I. V. et al. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: An open phase I/II trial in healthy adults in Russia. Hum. Vaccin Immunother. 13, 613–620 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, N. J. et al. Development of a preventive vaccine for Ebola virus infection in primates. Nature 408, 605–609 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kennedy, S. B. et al. Phase 2 Placebo-Controlled Trial of Two Vaccines to Prevent Ebola in Liberia. N. Engl. J. Med. 377, 1438–1447 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agua-Agum, J. et al. Ebola virus disease among children in West Africa. N. Engl. J. Med. 372, 1274–1277 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Sullivan, N. J. et al. CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nat. Med. 17, 1128–1131 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reynolds, P. & Marzi, A. Ebola and Marburg virus vaccines. Virus Genes 53, 501–515 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, J. E. et al. A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin. Vaccin. Immunol. 13, 1267–1277 (2006).

    Article 
    CAS 

    Google Scholar 

  • Falzarano, D., Geisbert, T. W. & Feldmann, H. Progress in filovirus vaccine development: evaluating the potential for clinical use. Expert Rev. Vaccines 10, 63–77 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. et al. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J. Virol. 84, 10386–10394 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marzi, A. et al. Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg. Infect. Dis. 21, 305–307 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, R. W. et al. Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. J. Clin. Invest 130, 539–551 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • Furuyama, W. & Marzi, A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu. Rev. Virol. 6, 435–458 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, G. et al. Ebola-specific therapeutic antibodies from lab to clinic: The example of ZMapp. Antivir. Res. 226, 105873 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakkazi, E. Randomised controlled trial begins for Ebola therapeutics. Lancet 392, 2338 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pascal, K. E. et al. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J. Infect. Dis. 218, S612–S626 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lyon, G. M. et al. Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 371, 2402–2409 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fausther-Bovendo, H. & Kobinger, G. The road to effective and accessible antibody therapies against Ebola virus. Curr. Opin. Virol. 54, 101210 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rayaprolu, V. et al. Structure of the Inmazeb cocktail and resistance to Ebola virus escape. Cell Host Microbe 31, 260–272.e7 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levine, M. M. Monoclonal Antibody Therapy for Ebola Virus Disease. N. Engl. J. Med. 381, 2365–2366 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gaudinski, M. R. et al. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet 393, 889–898 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markham, A. REGN-EB3: First Approval. Drugs 81, 175–178 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulangu, S. et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N. Engl. J. Med. 381, 2293–2303 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mullard, A. FDA approves antibody cocktail for Ebola virus. Nat. Rev. Drug Discov. 19, 827 (2020).

    PubMed 

    Google Scholar 

  • Flyak, A. I. et al. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160, 893–903 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mire, C. E. et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci. Transl. Med. 9, eaai8711 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, R. W., Mire, C. E., Feldmann, H. & Geisbert, T. W. Post-exposure treatments for Ebola and Marburg virus infections. Nat. Rev. Drug Discov. 17, 413–434 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sissoko, D. et al. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med. 13, e1001967 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bixler, S. L. et al. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antivir. Res. 151, 97–104 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacobs, M. et al. Late Ebola virus relapse causing meningoencephalitis: a case report. Lancet 388, 498–503 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dörnemann, J. et al. First Newborn Baby to Receive Experimental Therapies Survives Ebola Virus Disease. J. Infect. Dis. 215, 171–174 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Porter, D. P. et al. Remdesivir (GS-5734) Is Efficacious in Cynomolgus Macaques Infected With Marburg Virus. J. Infect. Dis. 222, 1894–1901 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iversen, P. L. et al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 4, 2806–2830 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heald, A. E. et al. AVI-7288 for Marburg Virus in Nonhuman Primates and Humans. N. Engl. J. Med. 373, 339–348 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heald, A. E. et al. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against ebola virus and marburg virus: results of two single-ascending-dose studies. Antimicrob. Agents Chemother. 58, 6639–6647 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ursic-Bedoya, R. et al. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J. Infect. Dis. 209, 562–570 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thi, E. P. et al. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Sci. Transl. Med. 6, 250ra116 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monath, T. P. et al. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 185, 263–265 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oldstone, M. B. Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction. Curr. Top. Microbiol Immunol. 262, V–xii (2002).

    PubMed 

    Google Scholar 

  • Hastie, K. M. et al. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression. Proc. Natl Acad. Sci. USA 108, 2396–2401 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie, K. M. et al. Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding. Proc. Natl Acad. Sci. USA 108, 19365–19370 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz, M. et al. Structure and receptor recognition by the Lassa virus spike complex. Nature 603, 174–179 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog. 12, e1005418 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Israeli, H. et al. Mapping of the Lassa virus LAMP1 binding site reveals unique determinants not shared by other old world arenaviruses. PLoS Pathog. 13, e1006337 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kouba, T. et al. Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nat. Commun. 12, 7018 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie, K. M. et al. Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z. J. Virol. 90, 4556–4562 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, K. G. et al. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell 162, 738–750 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinneo, L. & Pinneo, R. Mystery virus from Lassa. Am. J. Nurs. 71, 1352–1355, (1971).

    CAS 
    PubMed 

    Google Scholar 

  • Ehichioya, D. U. et al. Phylogeography of Lassa Virus in Nigeria. J Virol. 93, e00929-19 (2019).

  • Bowen, M. D. et al. Genetic diversity among Lassa virus strains. J. Virol. 74, 6992–7004 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitmer, S. L. M. et al. New Lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599–602 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macher, A. M. & Wolfe, M. S. Historical Lassa fever reports and 30-year clinical update. Emerg. Infect. Dis. 12, 835–837, (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ehlkes, L. et al. Management of a Lassa fever outbreak, Rhineland-Palatinate, Germany, 2016. Eur. Surveill. 22, 16–00728 (2017).

    Article 

    Google Scholar 

  • Njuguna, C. et al. A challenging response to a Lassa fever outbreak in a non endemic area of Sierra Leone in 2019 with export of cases to The Netherlands. Int. J. Infect. Dis. 117, 295–301 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brosh-Nissimov, T. Lassa fever: another threat from West Africa. Disaster Mil. Med. 2, 8 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie, K. M., Bale, S., Kimberlin, C. R. & Saphire, E. O. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses. Curr. Opin. Virol. 2, 151–156, (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Günther, S. et al. Lassa fever encephalopathy: Lassa virus in cerebrospinal fluid but not in serum. J. Infect. Dis. 184, 345–349 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Mahanty, S. et al. Low levels of interleukin-8 and interferon-inducible protein-10 in serum are associated with fatal infections in acute Lassa fever. J. Infect. Dis. 183, 1713–1721 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahanty, S. et al. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J. Immunol. 170, 2797–2801 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baize, S. et al. Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J. Immunol. 172, 2861–2869 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pannetier, D. et al. Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J. Virol. 85, 8293–8306 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, D. H., Wulff, H., Lange, J. V. & Murphy, F. A. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull. World Health Organ. 52, 523–534 (1975).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uckun, F. M. et al. Stampidine prevents mortality in an experimental mouse model of viral hemorrhagic fever caused by lassa virus. BMC Infect. Dis. 4, 1 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rieger, T., Merkler, D. & Günther, S. Infection of type I interferon receptor-deficient mice with various old world arenaviruses: a model for studying virulence and host species barriers. PLoS One 8, e72290 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun, N. E. et al. Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus. J. Virol. 87, 10908–10911 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oestereich, L. et al. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathog. 12, e1005656 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun, N. E. et al. Functional interferon system is required for clearance of lassa virus. J. Virol. 86, 3389–3392 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oestereich, L. et al. Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. J. Infect. Dis. 213, 934–938 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yun, N. E. et al. Animal Model of Sensorineural Hearing Loss Associated with Lassa Virus Infection. J. Virol. 90, 2920–2927 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Flatz, L. et al. T cell-dependence of Lassa fever pathogenesis. PLoS Pathog. 6, e1000836 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchmeier, M. J. & Rawls, W. E. Variation between strains of hamsters in the lethality of Pichinde virus infections. Infect. Immun. 16, 413–421 (1977).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, S. Y., Zhang, H., Yang, Y. & Tesh, R. B. Pirital virus (Arenaviridae) infection in the syrian golden hamster, Mesocricetus auratus: a new animal model for arenaviral hemorrhagic fever. Am. J. Trop. Med. Hyg. 64, 111–118 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich, I. S. The search for animal models for Lassa fever vaccine development. Expert Rev. Vaccines 12, 71–86 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cashman, K. A. et al. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antivir. Res. 90, 70–79 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gary, J. M. et al. Lassa Virus Targeting of Anterior Uvea and Endothelium of Cornea and Conjunctiva in Eye of Guinea Pig Model. Emerg. Infect. Dis. 25, 865–874 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein, D. R. et al. A recombinant vesicular stomatitis-based Lassa fever vaccine elicits rapid and long-term protection from lethal Lassa virus infection in guinea pigs. NPJ Vaccines 4, 8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein, D. R. et al. Differential pathogenesis of closely related 2018 Nigerian outbreak clade III Lassa virus isolates. PLoS Pathog. 17, e1009966 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. X. et al. Persistence of Lassa Virus Associated With Severe Systemic Arteritis in Convalescing Guinea Pigs (Cavia porcellus). J. Infect. Dis. 219, 1818–1822 (2019).

    PubMed 

    Google Scholar 

  • Huynh, T. et al. Lassa virus antigen distribution and inflammation in the ear of infected strain 13/N Guinea pigs. Antivir. Res. 183, 104928 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jahrling, P. B., Smith, S., Hesse, R. A. & Rhoderick, J. B. Pathogenesis of Lassa virus infection in guinea pigs. Infect. Immun. 37, 771–778, (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sattler, R. A., Paessler, S., Ly, H. & Huang, C. Animal Models of Lassa Fever. Pathogens 9, 197 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safronetz, D. et al. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci. Rep. 5, 14775 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maruyama, J. et al. Lethal Infection of Lassa Virus Isolated from a Human Clinical Sample in Outbred Guinea Pigs without Adaptation. mSphere 4, e00428–00419 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warner, B. M., Safronetz, D. & Stein, D. R. Current research for a vaccine against Lassa hemorrhagic fever virus. Drug Des. Devel Ther. 12, 2519–2527 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warner, B. M., Siragam, V. & Stein, D. R. Assessment of antiviral therapeutics in animal models of Lassa fever. Curr. Opin. Virol. 37, 84–90 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, D. H. et al. Experimental infection of rhesus monkeys with Lassa virus and a closely related arenavirus, Mozambique virus. J. Infect. Dis. 146, 360–368 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher-Hoch, S. P. et al. Physiological and immunologic disturbances associated with shock in a primate model of Lassa fever. J. Infect. Dis. 155, 465–474 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yun, N. E. & Walker, D. H. Pathogenesis of Lassa fever. Viruses 4, 2031–2048 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baillet, N. et al. Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun. Biol. 4, 27 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensley, L. E. et al. Pathogenesis of Lassa fever in cynomolgus macaques. Virol. J. 8, 205 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateo, M. et al. Pathogenesis of recent Lassa virus isolates from lineages II and VII in cynomolgus monkeys. Virulence 13, 654–669 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safronetz, D. et al. A recently isolated Lassa virus from Mali demonstrates atypical clinical disease manifestations and decreased virulence in cynomolgus macaques. J. Infect. Dis. 207, 1316–1327 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Downs, I. L. et al. Natural History of Aerosol Induced Lassa Fever in Non‑Human Primates. Viruses 12, 593 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baize, S. et al. Early and strong immune responses are associated with control of viral replication and recovery in lassa virus-infected cynomolgus monkeys. J. Virol. 83, 5890–5903 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrion, R. Jr. et al. Lassa virus infection in experimentally infected marmosets: liver pathology and immunophenotypic alterations in target tissues. J. Virol. 81, 6482–6490 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapido, H. & Sanmartín, C. Pichindé virus, a new virus of the Tacaribe group from Colombia. Am. J. Trop. Med. Hyg. 20, 631–641 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, D. H., Wulff, H. & Murphy, F. A. Experimental Lassa virus infection in the squirrel monkey. Am. J. Pathol. 80, 261–278 (1975).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahrling, P. B. et al. Pathogenesis of a pichinde virus strain adapted to produce lethal infections in guinea pigs. Infect. Immun. 32, 872–880 (1981).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Connolly, B. M. et al. Pathogenesis of Pichinde virus infection in strain 13 guinea pigs: an immunocytochemical, virologic, and clinical chemistry study. Am. J. Trop. Med. Hyg. 49, 10–24 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cosgriff, T. M. et al. Studies of the coagulation system in arenaviral hemorrhagic fever: experimental infection of strain 13 guinea pigs with Pichinde virus. Am. J. Trop. Med. Hyg. 36, 416–423 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L., Marriott, K. A., Harnish, D. G. & Aronson, J. F. Reassortant analysis of guinea pig virulence of pichinde virus variants. Virology 290, 30–38 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lan, S. et al. Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. J. Virol. 83, 6357–6362 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campo, A. et al. Impairment in auditory and visual function follows perinatal viral infection in the rat. Int. J. Neurosci. 27, 85–90 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich, I. S. et al. Arenavirus-mediated liver pathology: acute lymphocytic choriomeningitis virus infection of rhesus macaques is characterized by high-level interleukin-6 expression and hepatocyte proliferation. J. Virol. 77, 1727–1737 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uwishema, O. et al. Lassa fever amidst the COVID-19 pandemic in Africa: A rising concern, efforts, challenges, and future recommendations. J. Med. Virol. 93, 6433–6436 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abreu-Mota, T. et al. Non-neutralizing antibodies elicited by recombinant Lassa–Rabies vaccine are critical for protection against Lassa fever. Nat. Commun. 9, 4223 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galan-Navarro, C. et al. Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology 512, 161–171 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, Y. et al. A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region. mBio 11, e00186–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, Y. et al. A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. mBio 11, e00039–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wulff, H., McIntosh, B. M., Hamner, D. B. & Johnson, K. M. Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. B World Health Organ. 55, 441–444 (1977).

    CAS 

    Google Scholar 

  • Salami, K. et al. A review of Lassa fever vaccine candidates. Curr. Opin. Virol. 37, 105–111 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zapata, J. C. et al. Genetic variation in vitro and in vivo of an attenuated Lassa vaccine candidate. J. Virol. 88, 3058–3066 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrion, R. et al. A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine 25, 4093–4102 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lukashevich, I. S. et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine 26, 5246–5254 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carnec, X. et al. A Vaccine Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia Virus Expressing Heterologous Glycoproteins. J. Virol. 92, e02230–17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2, e183 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safronetz, D. et al. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl. Trop. Dis. 9, e0003736 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bredenbeek, P. J. et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology 345, 299–304 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, X. et al. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine 29, 1248–1257 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich, I. S. & Pushko, P. Vaccine platforms to control Lassa fever. Expert Rev. Vaccines 15, 1135–1150, (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frantz, P. N., Teeravechyan, S. & Tangy, F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 20, 493–500 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateo, M. et al. One-shot immunization using a Measles/Lassa vaccine fully protects cynomolgus monkeys against Lassa fever. Int J Infect Dis. 79, 6 (2019).

  • Clegg, J. C. & Lloyd, G. Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever. Lancet 2, 186–188, (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher-Hoch, S. P., Hutwagner, L., Brown, B. & McCormick, J. B. Effective vaccine for lassa fever. J. Virol. 74, 6777–6783 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvato, M. S. et al. A Single Dose of Modified Vaccinia Ankara Expressing Lassa Virus-like Particles Protects Mice from Lethal Intra-cerebral Virus Challenge. Pathogens 8, 133 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pushko, P. et al. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J. Virol. 75, 11677–11685 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins. Vaccine 36, 683–690 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maruyama, J. et al. Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs. Vaccine 37, 6824–6831 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cashman, K. A. et al. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccines 1, 262–277 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cashman, K. A. et al. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Hum. Vaccin Immunother. 13, 2902–2911 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, J. et al. Immunogenicity of a protective intradermal DNA vaccine against lassa virus in cynomolgus macaques. Hum. Vaccin Immunother. 15, 2066–2074 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotturi, M. F. et al. A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease. PLoS Pathog. 5, e1000695 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botten, J. et al. A multivalent vaccination strategy for the prevention of Old World arenavirus infection in humans. J. Virol. 84, 9947–9956 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leifer, E., Gocke, D. J. & Bourne, H. Lassa fever, a new virus disease of man from West Africa. II. Report of a laboratory-acquired infection treated with plasma from a person recently recovered from the disease. Am. J. Trop. Med. Hyg. 19, 677–679 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jahrling, P. B. Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 12, 93–102 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frame, J. D., Verbrugge, G. P., Gill, R. G. & Pinneo, L. The use of Lassa fever convalescent plasma in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 78, 319–324 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCormick, J. B. Clinical, epidemiologic, and therapeutic aspects of Lassa fever. Med. Microbiol. Immunol. 175, 153–155 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jahrling, P. B. et al. Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin. J. Infect. Dis. 141, 580–589 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ter Meulen, J. et al. Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am. J. Trop. Med. Hyg. 55, 661–666 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Houlihan, C. & Behrens, R. Lassa fever. BMJ 358, j2986 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Carrillo-Bustamante, P. et al. Determining Ribavirin’s mechanism of action against Lassa virus infection. Sci. Rep. 7, 11693 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madu, I. G. et al. A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 14, e1007439 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruo, S. L. et al. Antigenic relatedness between arenaviruses defined at the epitope level by monoclonal antibodies. J. Gen. Virol. 72, 549–555 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cross, R. W. et al. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc. Natl Acad. Sci. USA 120, e2304876120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, N. S. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 362, 1353–1358 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaki, A. M. et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rabaan, A. A. et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Le. Infez. Med. 28, 174–184 (2020).

    CAS 

    Google Scholar 

  • Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol 17, 181–192 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281–292.e286 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 181, 894–904.e899 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arabi, Y. M. et al. Middle East Respiratory Syndrome. N. Engl. J. Med. 376, 584–594 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cron, R. Q., Caricchio, R. & Chatham, W. W. Calming the cytokine storm in COVID-19. Nat. Med. 27, 1674–1675 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, R.-D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, K. et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J. Infect. Dis. 213, 712–722 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 17, e1009195 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, S. H. et al. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe 28, 124–133.e124 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, W. et al. A mouse model for SARS-CoV-2-induced acute respiratory distress syndrome. Signal Transduct. Target Ther. 6, 1 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agrawal, A. S. et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 89, 3659–3670 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, G. et al. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus. PLoS One 10, e0145561 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, X. et al. Characterization and Demonstration of the Value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease. J. Virol. 90, 57–67 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pascal, K. E. et al. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc. Natl Acad. Sci. USA 112, 8738–8743 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cockrell, A. S. et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol 2, 16226 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J., Yang, Y. L., Jeong, Y. & Jang, Y. S. Middle East Respiratory Syndrome-Coronavirus Infection into Established hDPP4-Transgenic Mice Accelerates Lung Damage Via Activation of the Pro-Inflammatory Response and Pulmonary Fibrosis. J. Microbiol. Biotechnol. 30, 427–438 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hassan, A. O. et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753.e744 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, J. et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis Vaccination, and Treatment. Cell 182, 734–743.e735 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc. Natl Acad. Sci. USA 111, 4970–4975 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Israelow, B. et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, M. S. et al. Non-invasive administration of AAV to target lung parenchymal cells and develop SARS-CoV-2-susceptible mice. Mol. Ther. 30, 1994–2004 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sefik, E. et al. A humanized mouse model of chronic COVID-19. Nat. Biotechnol. 40, 906–920 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sefik, E. et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606, 585–593 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, A. et al. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 3, e5 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, K. et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc. Natl Acad. Sci. USA 114, E3119–e3128 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 369, 1603–1607 (2020).

  • Wang et al. Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice. Protein Cell 11, 776–782 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leist, S. R. et al. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 183, 1070–1085.e1012 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, F. et al. Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Front. Immunol. 13, 821664 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, D. L. et al. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014. Am. J. Pathol. 186, 652–658 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Iwata-Yoshikawa, N. et al. Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J. Virol. 93, e01818–e01818 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coleman, C. M. et al. CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J. Virol. 91, e01825-16 (2017).

  • Singh, A. et al. A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol. Sin. 35, 290–304 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. H. et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2025373118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, X. S. et al. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. J. Virol. 94, e00940–00920 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, H. et al. A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration. Cell Discov. 8, 132 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, G. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227–231 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, A. et al. Severe Acute Respiratory Syndrome Coronavirus Infection of Golden Syrian Hamsters. J. Virol. 79, 503–511 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, A. et al. Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J. Infect. Dis. 193, 685–692 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schaecher, S. R. et al. An immunosuppressed Syrian golden hamster model for SARS-CoV infection. Virology 380, 312–321 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, J. F. et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin. Infect. Dis. 71, 2428–2446 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakoyiannis, I. Cardiovascular effects of SARS-CoV-2 in hamster. Lab. Anim. 51, 77 (2022).

    Google Scholar 

  • Rizvi, Z. A. et al. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. Elife 11, e73522 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, L. et al. Infection, pathology and interferon treatment of the SARS-CoV-2 Omicron BA.1 variant in juvenile, adult and aged Syrian hamsters. Cell. Mol. Immunol. 19, 1392–1399 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osterrieder, N. et al. Age-Dependent Progression of SARS-CoV-2 Infection in Syrian Hamsters. Viruses 12, 779 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohno, M. et al. Abnormal Blood Coagulation and Kidney Damage in Aged Hamsters Infected with Severe Acute Respiratory Syndrome Coronavirus 2. Viruses 13, 2137 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santosh, D. et al. Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. mBio. 12, e0097421 (2021).

    Article 

    Google Scholar 

  • Li, C. et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection by Intranasal or Intratesticular Route Induces Testicular Damage. Clin. Infect. Dis. 75, e974–e990 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, L. et al. Persisting lung pathogenesis and minimum residual virus in hamster after acute COVID-19. Protein Cell 13, 72–77 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Golden, J. W. et al. Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease following Exposure to SARS-CoV-2. mBio 13, e0290621 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhai, C. et al. Roborovski hamster (Phodopus roborovskii) strain SH101 as a systemic infection model of SARS-CoV-2. Virulence 12, 2430–2442 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trimpert, J. et al. The Roborovski Dwarf Hamster Is A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection. Cell Rep. 33, 108488 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertzbach, L. D. et al. SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound. Emerg. Dis. 68, 1075–1079 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect. 9, 2673-2684, (2020).

  • Boudewijns, R. et al. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat. Commun. 11, 5838 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brocato, R. L. et al. Disruption of Adaptive Immunity Enhances Disease in SARS-CoV-2-Infected Syrian Hamsters. J. Virol. 94, e01683–01620 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Doremalen, N. et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J. Virol. 88, 9220–9232 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martina, B. E. E. et al. Virology: SARS virus infection of cats and ferrets. Nature 425, 915 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weingartl, H. et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78, 12672–12676 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darnell, M. E. R. et al. Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets. J. Infect. Dis. 196, 1329–1338 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chu, Y.-K. et al. The SARS-CoV ferret model in an infection-challenge study. Virology 374, 151–163 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Y. I. et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 27, 704–709 e702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monchatre-Leroy, E. et al. Hamster and ferret experimental infection with intranasal low dose of a single strain of SARS-CoV-2. J. Gen. Virol. 102, 001567 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun. 12, 1653 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Everett, H. E. et al. Intranasal Infection of Ferrets with SARS-CoV-2 as a Model for Asymptomatic Human Infection. Viruses 13, 113 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pulit-Penaloza, J. A. et al. Comparative Assessment of Severe Acute Respiratory Syndrome Coronavirus 2 Variants in the Ferret Model. mBio 13, e0242122 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ryan, K. A. et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat. Commun. 12, 81 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martins, M., Fernandes, M. H. V., Joshi, L. R. & Diel, D. G. Age-Related Susceptibility of Ferrets to SARS-CoV-2 Infection. J. Virol. 96, e0145521 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kim, Y.-I. et al. Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nat. Commun. 13, 21 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, Z. & Hu, Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res. 133, 74–87 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eur. Surveill. 25, 2001005 (2020).

    Article 

    Google Scholar 

  • Shuai, L. et al. Replication, pathogenicity, and transmission of SARS-CoV-2 in minks. Natl Sci. Rev. 8, nwaa291 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hammer, A. S. et al. SARS-CoV-2 Transmission between Mink (Neovison vison) and Humans, Denmark. Emerg. Infect. Dis. 27, 547–551 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adney, D. R. et al. Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2. JCI Insight 7, e159573 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritter, J. M. et al. Histopathology and localization of SARS-CoV-2 and its host cell entry receptor ACE2 in tissues from naturally infected US-farmed mink (Neovison vison). Vet. Pathol. 59, 681–695 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Virtanen, J. et al. Experimental Infection of Mink with SARS-COV-2 Omicron Variant and Subsequent Clinical Disease. Emerg. Infect. Dis. 28, 1286–1288 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Z. et al. Integrated histopathological, lipidomic, and metabolomic profiles reveal mink is a useful animal model to mimic the pathogenicity of severe COVID-19 patients. Signal Transduct. Target Ther. 7, 29 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Wit, E. et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. Natl Acad. Sci. USA 110, 16598–16603 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falzarano, D. et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog. 10, e1004250 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, S. et al. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct. Target Ther. 5, 157 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, D. et al. Single-dose AAV-based vaccine induces a high level of neutralizing antibodies against SARS-CoV-2 in rhesus macaques. Protein Cell 14, 69–73 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Munster, V. J. et al. Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. Sci. Adv. 7, eabj3627 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haagmans, B. L. & Osterhaus, A. D. M. E. Nonhuman primate models for SARS. PLoS Med. 3, e194 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowe, T. et al. Macaque model for severe acute respiratory syndrome. J. Virol. 78, 11401–11404 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAuliffe, J. et al. Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330, 8–15 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lawler, J. V. et al. Cynomolgus macaque as an animal model for severe acute respiratory syndrome. PLoS Med. 3, e149 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rockx, B. et al. Comparative pathogenesis of three human and zoonotic SARS-CoV strains in cynomolgus macaques. PLoS One 6, e18558 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Lang, A. et al. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques. PLoS Pathog. 3, e112 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smits, S. L. et al. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J. Virol. 85, 4234–4245 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagata, N. et al. Pathology and virus dispersion in cynomolgus monkeys experimentally infected with severe acute respiratory syndrome coronavirus via different inoculation routes. Int. J. Exp. Pathol. 88, 403–414 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rockx, B. et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baek, S. H. et al. Cynomolgus Macaque Model for COVID-19 Delta Variant. Immune Netw. 22, e48 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnston, S. C. et al. Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS One 16, e0246366 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dabisch, P. A. et al. Seroconversion and fever are dose-dependent in a nonhuman primate model of inhalational COVID-19. PLoS Pathog. 17, e1009865 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salguero, F. J. et al. Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. Nat. Commun. 12, 1260 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urano, E. et al. COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proc. Natl Acad. Sci. USA 118, e2104847118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Proteomic and Metabolomic Characterization of SARS-CoV-2-Infected Cynomolgus Macaque at Early Stage. Front. Immunol. 13, 954121 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woolsey, C. et al. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat. Immunol. 22, 86–98 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blair, R. V. et al. Acute Respiratory Distress in Aged, SARS-CoV-2-Infected African Green Monkeys but Not Rhesus Macaques. Am. J. Pathol. 191, 274–282 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, D. K. et al. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat. Microbiol 6, 73–86 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 590, E25 (2020).

    Article 

    Google Scholar 

  • Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vogel, A. B. et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 592, 283–289 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muñoz-Fontela, C. et al. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog. 18, e1010161 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandrashekar, A. et al. Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Sci. Transl. Med. 13, eabj2641 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77–81 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 21, 803–812 (2021).

  • Wang, H. et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182, 713–721 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, R. L., Donaldson, E. F. & Baric, R. S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11, 836–848 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y., Jiang, S. & Du, L. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines 17, 677–686 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, Y. et al. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J. Immunol. 173, 4050–4057 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Richmond, P. et al. Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. Lancet 397, 682–694 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bravo, L. et al. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: a phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet 399, 461–472 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunkle, L. M. et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N. Engl. J. Med. 386, 531–543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dai, L. et al. A universal design of betacoronavirus vaccines against COVID-19, MERS and SARS. Cell 182, 722–733.e11 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, S. et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis. 21, 1107–1119 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, K. et al. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell 185, 2265–2278.e2214 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, L. et al. Efficacy and Safety of the RBD-Dimer-Based Covid-19 Vaccine ZF2001 in Adults. N. Engl. J. Med. 386, 2097–2111 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, L. et al. Safety and immunogenicity of a protein subunit COVID-19 vaccine (ZF2001) in healthy children and adolescents aged 3-17 years in China: a randomised, double-blind, placebo-controlled, phase 1 trial and an open-label, non-randomised, non-inferiority, phase 2 trial. Lancet Child Adolesc. Health 7, 269–279 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e17 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Travieso, T. et al. The use of viral vectors in vaccine development. NPJ Vaccines 7, 75 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ewer, K. J. et al. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr. Opin. Immunol. 41, 47–54 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Halperin, S. A. et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet 399, 237–248 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sadoff, J. et al. Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. N. Engl. J. Med. 386, 847–860 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, F. et al. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir. Med. 10, 749–760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logunov, D. Y. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397, 671–681 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robbins, J. A. et al. Safety and immunogenicity of intramuscular, single-dose V590 (rVSV-SARS-CoV-2 Vaccine) in healthy adults: Results from a phase 1 randomised, double-blind, placebo-controlled, dose-ranging trial. eBioMedicine 82, 104138 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. Characterization of Immune Response Diversity in Rodents Vaccinated with a Vesicular Stomatitis Virus Vectored COVID-19 Vaccine. Viruses 14, 1127 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. Oral delivery of a chitosan adjuvanted COVID-19 vaccine provides long-lasting and broad-spectrum protection against SARS-CoV-2 variants of concern in golden hamsters. Antivir. Res. 220, 105765 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kapadia, S. U. et al. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 340, 174–182 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, A. C. et al. Bovine parainfluenza virus type 3 (BPIV3) fusion and hemagglutinin-neuraminidase glycoproteins make an important contribution to the restricted replication of BPIV3 in primates. J. Virol. 74, 8922–8929 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karron, R. A. et al. Evaluation of two chimeric bovine-human parainfluenza virus type 3 vaccines in infants and young children. Vaccine 30, 3975–3981 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Buchholz, U. J. et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl Acad. Sci. USA 101, 9804–9809 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohtsuka, J. et al. Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2. iScience 24, 103379 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • An, D. et al. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine. Sci. Adv. 7, eabi5246 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. A single intranasal dose of a live-attenuated parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in hamsters. Proc. Natl Acad. Sci. USA 118, e2109744118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Nouën, C. et al. Intranasal pediatric parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in monkeys. Cell 185, 4811–4825.e4817 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ilinykh, P. A. et al. A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. NPJ Vaccines 7, 47 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live Attenuated Influenza Vaccines. mBio 10, e02180–02119 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Sci. Bull. 67, 1372–1387 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhu, F. et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 11, 1075–1088 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, F.-C. et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395, 1845–1854 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, F.-C. et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396, 479–488 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. X. et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. Lancet Respir. Med. 10, 739–748 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial. Nat. Med. 28, 401–409 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, L. et al. Antibody persistence and safety after heterologous boosting with orally aerosolised Ad5-nCoV in individuals primed with two-dose CoronaVac previously: 12-month analyses of a randomized controlled trial. Emerg. Microbes Infect. 12, 2155251 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tukhvatulin, A. I. et al. An open, non-randomised, phase 1/2 trial on the safety, tolerability, and immunogenicity of single-dose vaccine “Sputnik Light” for prevention of coronavirus infection in healthy adults. Lancet Reg. Health Eur. 11, 100241 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voysey, M. et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397, 881–891 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jenkin, D. et al. Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nat. Med. 27, 279–288 (2020).

    PubMed 

    Google Scholar 

  • Logunov, D. Y. et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 396, 887–897 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weskamm, L. M. et al. Persistence of MERS-CoV-spike-specific B cells and antibodies after late third immunization with the MVA-MERS-S vaccine. Cell Rep. Med. 3, 100685 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, F. et al. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J. Virol. 87, 11950–11954 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folegatti, P. M. et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis. 20, 816–826 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García-Arriaza, J. et al. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARS-CoV-2 spike induce robust T- and B-cell immune responses and full efficacy in mice. J. Virol. 95, e02260–02220 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, E. et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target Ther. 7, 94 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahin, U. et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. medRxiv, (2020).

  • Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh, E. E. et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 383, 2439–2450 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Widge, A. T. et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N. Engl. J. Med. 384, 80–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, N.-N. et al. A thermostable mRNA vaccine against COVID-19. Cell 182, 1271–1283.e1216 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, G. L. et al. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Microbe 3, e193–e202 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 324, 460–470 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Focosi, D., Anderson, A. O., Tang, J. W. & Tuccori, M. Convalescent Plasma Therapy for COVID-19: State of the Art. Clin. Microbiol. Rev. 33, e00072–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 23, 189–199 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leisman, D. E. et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 8, 1233–1244 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giamarellos-Bourboulis, E. J. et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 27, 992–1000.e1003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci. USA 117, 10970–10975 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salama, C. et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 384, 20–30 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosas, I. O. et al. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N. Engl. J. Med. 384, 1503–1516 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tatham, K. C., Shankar-Hari, M. & Arabi, Y. M. The REMDACTA trial: do interleukin receptor antagonists provide additional benefit in COVID-19? Intensive Care Med. 47, 1315–1318 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, P. et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N. Engl. J. Med. 384, 229–237 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 369, 1010–1014, (2020).

  • Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, 369, 1014–1018 (2020).

  • Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110–1115 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinreich, D. M. et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N. Engl. J. Med. 384, 238–251 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weinreich, D. M. et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19. N. Engl. J. Med. 385, e81 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120–124 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dougan, M. et al. Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19. N. Engl. J. Med. 385, 1382–1392 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gottlieb, R. L. et al. Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 325, 632–644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoy, S. M. Amubarvimab/Romlusevimab: First Approval. Drugs 82, 1327–1331 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evering, T. H. et al. Safety and Efficacy of Combination SARS-CoV-2 Neutralizing Monoclonal Antibodies Amubarvimab Plus Romlusevimab in Nonhospitalized Patients With COVID-19. Ann. Intern. Med. 176, 658–666 (2023).

    Article 
    PubMed 

    Google Scholar 

  • ACTIV-3/Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect. Dis. 22, 622–635, (2022).

  • Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suryadevara, N. et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 184, 2316–2331.e2315 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lok, S. M. An NTD supersite of attack. Cell Host Microbe 29, 744–746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 29, 819–833.e817 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373, 1109–1116 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728–735 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, X. et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat. Microbiol. 7, 1063–1074 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, P. et al. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci. Transl. Med. 14, eabi9215 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanke, L. et al. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat. Commun. 13, 155 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, D. et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed. Pharmacother. 137, 111313 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, S. et al. Small molecules in the treatment of COVID-19. Signal Transduct. Target Ther. 7, 387 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kokic, G. et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 12, 279 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499–1504 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rochwerg, B. et al. Remdesivir for severe covid-19: a clinical practice guideline. BMJ 370, m2924 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gottlieb, R. L. et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N. Engl. J. Med. 386, 305–315 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amstutz, A. et al. Effects of remdesivir in patients hospitalised with COVID-19: a systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir. Med. 11, 453–464 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kabinger, F. et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 28, 740–746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, W. A. 2nd et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med. 14, eabl7430 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayk Bernal, A. et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 386, 509–520 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cao, Z. et al. VV116 versus Nirmatrelvir-Ritonavir for Oral Treatment of Covid-19. N. Engl. J. Med. 388, 406–417 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joshi, S. et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 102, 501–508 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, H. J. et al. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharm. Sin. 43, 3130–3138 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hammond, J. et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N. Engl. J. Med. 386, 1397–1408 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel, N. M. et al. Inhibition of the JAK/STAT Pathway With Baricitinib Reduces the Multiple Organ Dysfunction Caused by Hemorrhagic Shock in Rats. Ann. Surg. 278, e137–e146 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bronte, V. et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Invest. 130, 6409–6416 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marconi, V. C. et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 9, 1407–1418 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamb, Y. N. Remdesivir: First Approval. Drugs 80, 1355–1363 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalil, A. C. et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N. Engl. J. Med. 384, 795–807 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cadegiani, F. A. et al. Final Results of a Randomized, Placebo-Controlled, Two-Arm, Parallel Clinical Trial of Proxalutamide for Hospitalized COVID-19 Patients: A Multiregional, Joint Analysis of the Proxa-Rescue AndroCoV Trial. Cureus 13, e20691 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • John, M. et al. Proxalutamide Reduces the Rate of Hospitalization for COVID-19 Male Outpatients: A Randomized Double-Blinded Placebo-Controlled Trial. Front. Med. 9, 964099 (2022).

    Article 

    Google Scholar 

  • Mendoza, E. J., Warner, B., Safronetz, D. & Ranadheera, C. Crimean-Congo haemorrhagic fever virus: Past, present and future insights for animal modelling and medical countermeasures. Zoonoses Public Health 65, 465–480 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitehouse, C. A. Crimean-Congo hemorrhagic fever. Antivir. Res. 64, 145–160 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Durie, I. A. et al. Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus. Nat. Commun. 13, 7298 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zivcec, M. et al. Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antivir. Res. 146, 112–120 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Casals, J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc. Soc. Exp. Biol. Med. 131, 233–236 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serretiello, E. et al. The emerging tick-borne Crimean-Congo haemorrhagic fever virus: A narrative review. Travel Med. Infect. Dis. 37, 101871 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Vorou, R., Pierroutsakos, I. N. & Maltezou, H. C. Crimean-Congo hemorrhagic fever. Curr. Opin. Infect. Dis. 20, 495–500 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Shayan, S., Bokaean, M., Shahrivar, M. R. & Chinikar, S. Crimean-Congo Hemorrhagic Fever. Lab. Med. 46, 180–189 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Dokuzoguz, B. et al. Severity scoring index for Crimean-Congo hemorrhagic fever and the impact of ribavirin and corticosteroids on fatality. Clin. Infect. Dis. 57, 1270–1274 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cevik, M. A. et al. Clinical and laboratory features of Crimean-Congo hemorrhagic fever: predictors of fatality. Int J. Infect. Dis. 12, 374–379 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Xu, Z. S. et al. LDLR is an entry receptor for Crimean-Congo hemorrhagic fever virus. Cell Res. 34, 140–150 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freiberg, A. N. et al. Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J. Virol. 82, 10341–10348 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nair, N., Osterhaus, A., Rimmelzwaan, G. F. & Prajeeth, C. K. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 12, 1174 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halldorsson, S. et al. Shielding and activation of a viral membrane fusion protein. Nat. Commun. 9, 349 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Himeidan, Y. E. et al. Recent outbreaks of rift valley Fever in East Africa and the middle East. Front. Public Health 2, 169 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerken, K. N. et al. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Negl. Trop. Dis. 16, e0009852 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seufi, A. M. & Galal, F. H. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007. BMC Infect. Dis. 10, 65 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Odendaal, L., Davis, A. S. & Venter, E. H. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 13, 709 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Odendaal, L., Davis, A. S., Fosgate, G. T. & Clift, S. J. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Young Lambs. Vet. Pathol. 57, 66–81 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sheehan, K. C. et al. Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J. Interferon Cytokine Res. 26, 804–819 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garrison, A. R. et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl. Trop. Dis. 11, e0005908 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindquist, M. E. et al. Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. J. Virol. 92, e01083–01018 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spengler, J. R. et al. Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection. J. Infect. Dis. 216, 1386–1397 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hawman, D. W. et al. Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus. Elife 8, e63906 (2021).

    Article 

    Google Scholar 

  • Fagbami, A. H., Tomori, O., Fabiyi, A. & Isoun, T. T. Experimantal Congo virus (Ib -AN 7620) infection in primates. Virologie 26, 33–37, (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Smith, D. R. et al. Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathog. 15, e1008050 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnold, C. E. et al. Host response transcriptomic analysis of Crimean-Congo hemorrhagic fever pathogenesis in the cynomolgus macaque model. Sci. Rep. 11, 19807 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, D. R. et al. The pathogenesis of Rift Valley fever virus in the mouse model. Virology 407, 256–267 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mandell, R. B. et al. A replication-incompetent Rift Valley fever vaccine: chimeric virus-like particles protect mice and rats against lethal challenge. Virology 397, 187–198 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Näslund, J. et al. Kinetics of Rift Valley Fever Virus in experimentally infected mice using quantitative real-time RT-PCR. J. Virol. Methods 151, 277–282 (2008).

    Article 
    PubMed 

    Google Scholar 

  • van Velden, D. J. et al. Rift Valley fever affecting humans in South Africa: a clinicopathological study. S Afr. Med. J. 51, 867–871 (1977).

    PubMed 

    Google Scholar 

  • Morrill, J. C. et al. Rapid accumulation of virulent rift valley Fever virus in mice from an attenuated virus carrying a single nucleotide substitution in the m RNA. PLoS One 5, e9986 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, A. O., Snyder, L. F., Pitt, M. L. & Wood, O. L. Mucosal priming alters pathogenesis of Rift Valley fever. Adv. Exp. Med. Biol. 237, 717–723 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anderson, G. W. Jr., Slone, T. W. Jr. & Peters, C. J. The gerbil, Meriones unguiculatus, a model for Rift Valley fever viral encephalitis. Arch. Virol. 102, 187–196 (1988).

    Article 
    PubMed 

    Google Scholar 

  • Anderson, G. W. Jr. & Peters, C. J. Viral determinants of virulence for Rift Valley fever (RVF) in rats. Micro. Pathog. 5, 241–250 (1988).

    Article 

    Google Scholar 

  • Anderson, G. W. Jr. et al. Efficacy of a Rift Valley fever virus vaccine against an aerosol infection in rats. Vaccine 9, 710–714 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Peters, C. J. & Slone, T. W. Inbred rat strains mimic the disparate human response to Rift Valley fever virus infection. J. Med. Virol. 10, 45–54 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bird, B. H. et al. Rift valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J. Virol. 82, 2681–2691 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bales, J. M. et al. Choice of inbred rat strain impacts lethality and disease course after respiratory infection with Rift Valley Fever Virus. Front. Cell Infect. Microbiol 2, 105 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikegami, T. & Makino, S. The pathogenesis of Rift Valley fever. Viruses 3, 493–519 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niklasson, B. S., Meadors, G. F. & Peters, C. J. Active and passive immunization against Rift Valley fever virus infection in Syrian hamsters. Acta Pathol. Microbiol. Immunol. Scand. C 92, 197–200 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Westover, J. B. et al. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antivir. Res 156, 38–45 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sall, A. A. et al. Genetic reassortment of Rift Valley fever virus in nature. J. Virol. 73, 8196–8200 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, T. M. et al. Animal models of Rift Valley fever virus infection. Virus Res. 163, 417–423 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pavel, S. T. I., Yetiskin, H., Kalkan, A. & Ozdarendeli, A. Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model. PLoS Negl. Trop. Dis. 14, e0008834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kortekaas, J. et al. Crimean-Congo Hemorrhagic Fever Virus Subunit Vaccines Induce High Levels of Neutralizing Antibodies But No Protection in STAT1 Knockout Mice. Vector Borne Zoonotic Dis. 15, 759–764 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scholte, F. E. M. et al. Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice. Emerg. Microbes Infect. 8, 575–578 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hinkula, J. et al. Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice. J. Virol. 91, e02076–16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buttigieg, K. R. et al. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PloS One 9, e91516 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zivcec, M. et al. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Neglected Tropical Dis. 12, e0006628 (2018).

    Article 

    Google Scholar 

  • Rodriguez, S. E. et al. Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci. Rep. 9, 7755 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faburay, B. et al. Current Status of Rift Valley Fever Vaccine Development. Vaccines 5, 29 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Randall, R. et al. The development of a formalin-killed Rift Valley fever virus vaccine for use in man. J. Immunol. 89, 660–671 (1962).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sindato, C. et al. Safety, Immunogenicity and Antibody Persistence of Rift Valley Fever Virus Clone 13 Vaccine in Sheep, Goats and Cattle in Tanzania. Front. Vet. Sci. 8, 779858 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faburay, B. et al. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep. Vector Borne Zoonotic Dis. 14, 746–756 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faburay, B. et al. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Sci. Rep. 6, 27719 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Appelberg, S. et al. Nucleoside-Modified mRNA Vaccines Protect IFNAR(−/−) Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. J. Virol. 96, e0156821 (2022).

    Article 
    PubMed 

    Google Scholar 

  • de Boer, S. M. et al. Rift Valley fever virus subunit vaccines confer complete protection against a lethal virus challenge. Vaccine 28, 2330–2339 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Suschak, J. J. et al. A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. NPJ Vaccines 6, 31 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hawman, D. W. et al. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nat. Microbiol. 6, 187–195 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tipih, T., Heise, M. & Burt, F. J. Immunogenicity of a DNA-Based Sindbis Replicon Expressing Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein. Vaccines 9, 1491 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holman, D. H. et al. A complex adenovirus-vectored vaccine against Rift Valley fever virus protects mice against lethal infection in the presence of preexisting vector immunity. Clin. Vaccin. Immunol. 16, 1624–1632 (2009).

    Article 
    CAS 

    Google Scholar 

  • Spik, K. et al. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 24, 4657–4666 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dowall, S. D. et al. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum. Vaccin. Immunother. 12, 519–527 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leventhal, S. S. et al. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. EBioMedicine 82, 104188 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elaldi, N. et al. Efficacy of oral ribavirin treatment in Crimean-Congo haemorrhagic fever: a quasi-experimental study from Turkey. J. Infect. 58, 238–244 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Oestereich, L. et al. Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever. PLoS Neglected Tropical Dis. 8, e2804 (2014).

    Article 

    Google Scholar 

  • Hawman, D. W. et al. Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice. Antivir. Res. 157, 18–26 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. In vitro and in vivo efficacy of a novel nucleoside analog H44 against Crimean-Congo hemorrhagic fever virus. Antivir. Res. 199, 105273 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hawman, D. W. et al. Efficacy of favipiravir (T-705) against Crimean-Congo hemorrhagic fever virus infection in cynomolgus macaques. Antivir. Res. 181, 104858 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Welch, S. R. et al. Identification of 2’-deoxy-2’-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antivir. Res. 147, 91–99 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suleiman, M. N. et al. Congo/Crimean haemorrhagic fever in Dubai. An outbreak at the Rashid Hospital. Lancet 2, 939–941 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vassilenko, S. M. et al. Specific intravenous immunoglobulin for Crimean-Congo haemorrhagic fever. Lancet 335, 791–792 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bertolotti-Ciarlet, A. et al. Cellular localization and antigenic characterization of crimean-congo hemorrhagic fever virus glycoproteins. J. Virol. 79, 6152–6161 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Golden, J. W. et al. GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Sci. Adv. 5, eaaw9535 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra, A. K. et al. Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. J. Virol. 94, e02005–e02019 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fels, J. M. et al. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell 184, 3486–3501.e3421 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra, A. K. et al. Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science 375, 104–109 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen, E. R. et al. A Protective Monoclonal Antibody Targets a Site of Vulnerability on the Surface of Rift Valley Fever Virus. Cell Rep. 25, 3750–3758.e3754 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, M. et al. Characterization of Two Neutralizing Antibodies against Rift Valley Fever Virus Gn Protein. Viruses 12, 259 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMillen, C. M. et al. A highly potent human neutralizing antibody prevents vertical transmission of Rift Valley fever virus in a rat model. Nat. Commun. 14, 4507 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutjahr, B. et al. Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Negl. Trop. Dis. 14, e0008143 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, N. S. et al. Multifunctional human monoclonal antibody combination mediates protection against Rift Valley fever virus at low doses. Nat. Commun. 14, 5650 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, N. S. et al. Potent neutralization of Rift Valley fever virus by human monoclonal antibodies through fusion inhibition. Proc. Natl Acad. Sci. USA 118, e2025642118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Neutralization mechanism of human monoclonal antibodies against Rift Valley fever virus. Nat. Microbiol. 4, 1231–1241 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cartwright, H. N., Barbeau, D. J. & McElroy, A. K. Isotype-Specific Fc Effector Functions Enhance Antibody-Mediated Rift Valley Fever Virus Protection In Vivo. mSphere 6, e0055621 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, Y. et al. Equine immunoglobulin F(ab’)(2) fragments protect mice from Rift Valley fever virus infection. Int. Immunopharmacol. 64, 217–222 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wichgers Schreur, P. J. et al. Multimeric single-domain antibody complexes protect against bunyavirus infections. eLife 9, e52716 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eaton, B. T., Broder, C. C., Middleton, D. & Wang, L. F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4, 23–35 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ternhag, A. & Penttinen, P. [Nipah virus–another product from the Asian “virus factory”]. Lakartidningen 102, 1046–1047 (2005).

    PubMed 

    Google Scholar 

  • Ciancanelli, M. J. & Basler, C. F. Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J. Virol. 80, 12070–12078 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chua, K. B. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26, 265–275 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Chua, K. B. et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432–1435 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gazal, S. et al. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens 11, 1419 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, K. T. et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 161, 2153–2167 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurley, E. S. et al. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg. Infect. Dis. 13, 1031–1037 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, B. et al. Phylogeography, Transmission, and Viral Proteins of Nipah Virus. Virol. Sin. 33, 385–393 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rockx, B. et al. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J. Virol. 85, 7658–7671 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaza, B. & Aguilar, H. C. Pathogenicity and virulence of henipaviruses. Virulence 14, 2273684 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, R. K. et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Vet. Q. 39, 26–55 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broder, C. C. et al. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antivir. Res. 100, 8–13 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhondt, K. P. et al. Type I interferon signaling protects mice from lethal henipavirus infection. J. Infect. Dis. 207, 142–151 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iampietro, M. et al. Activation of cGAS/STING pathway upon paramyxovirus infection. iScience 24, 102519 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iampietro, M. et al. Control of Nipah Virus Infection in Mice by the Host Adaptors Mitochondrial Antiviral Signaling Protein (MAVS) and Myeloid Differentiation Primary Response 88 (MyD88). J. Infect. Dis. 221, S401–s406 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valbuena, G. et al. A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog. 10, e1004063 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walpita, P. et al. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines 2, 21 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welch, S. R. et al. Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease. mBio 13, e0329421 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wong, K. T. et al. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 163, 2127–2137 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welch, S. R. et al. In Situ Imaging of Fluorescent Nipah Virus Respiratory and Neurological Tissue Tropism in the Syrian Hamster Model. J. Infect. Dis. 221, S448–s453 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williamson, M. M. & Torres-Velez, F. J. Henipavirus: a review of laboratory animal pathology. Vet. Pathol. 47, 871–880 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Torres-Velez, F. J. et al. Histopathologic and immunohistochemical characterization of Nipah virus infection in the guinea pig. Vet. Pathol. 45, 576–585 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Genzer, S. C. et al. Alterations in Blood Chemistry Levels Associated With Nipah Virus Disease in the Syrian Hamster Model. J. Infect. Dis. 221, S454–s459 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clayton, B. A. et al. The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets. PLoS Negl. Trop. Dis. 10, e0004775 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pickering, B. S. et al. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 34, 4777–4786 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, J. N. et al. Nipah virus infection in dogs, Malaysia, 1999. Emerg. Infect. Dis. 15, 950–952 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Middleton, D. J. et al. Experimental Nipah virus infection in pigs and cats. J. Comp. Pathol. 126, 124–136 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mungall, B. A. et al. Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat. J. Infect. Dis. 196, 812–816 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geisbert, T. W. et al. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PloS One 5, e10690 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, J. B. et al. An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys. J. Infect. Dis. 221, S414–s418 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prasad, A. N. et al. A Lethal Aerosol Exposure Model of Nipah Virus Strain Bangladesh in African Green Monkeys. J. Infect. Dis. 221, S431–s435 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geisbert, T. W., Feldmann, H. & Broder, C. C. Animal challenge models of henipavirus infection and pathogenesis. Curr. Top. Microbiol. Immunol. 359, 153–177 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mire, C. E. et al. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Sci. Rep. 6, 30916 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prasad, A. N. et al. Resistance of Cynomolgus Monkeys to Nipah and Hendra Virus Disease Is Associated With Cell-Mediated and Humoral Immunity. J. Infect. Dis. 221, S436–s447 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marianneau, P. et al. Experimental infection of squirrel monkeys with nipah virus. Emerg. Infect. Dis. 16, 507–510 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mire, C. E. et al. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol. J. 10, 353 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, S. et al. Construction of a recombinant vaccine expressing Nipah virus glycoprotein using the replicative and highly attenuated vaccinia virus strain LC16m8. PLoS Negl. Trop. Dis. 17, e0011851 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walpita, P. et al. Vaccine potential of Nipah virus-like particles. PloS one 6, e18437 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pastor, Y. et al. A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease. Cell Rep. Med. 5, 101467 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porotto, M. et al. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog. 6, e1001168 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dawes, B. E. et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci. Rep. 8, 7604 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodrigue, V. et al. Current progress towards prevention of Nipah and Hendra disease in humans: A scoping review of vaccine and monoclonal antibody candidates being evaluated in clinical trials. Trop. Med. Int. Health 29, 354–364 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Bossart, K. N. et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog. 5, e1000642 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisbert, T. W. et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci. Transl. Med. 6, 242ra282 (2014).

    Article 

    Google Scholar 

  • Playford, E. G. et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis. 20, 445–454 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nat. Commun. 15, 2987 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathieu, C. & Horvat, B. Henipavirus pathogenesis and antiviral approaches. Expert Rev. Anti Infect. Ther. 13, 343–354 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharma, V. et al. Zika virus: an emerging challenge to public health worldwide. Can. J. Microbiol. 66, 87–98 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roby, J. A., Setoh, Y. X., Hall, R. A. & Khromykh, A. A. Post-translational regulation and modifications of flavivirus structural proteins. J. Gen. Virol. 96, 1551–1569 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klema, V. J., Padmanabhan, R. & Choi, K. H. Flaviviral Replication Complex: Coordination between RNA Synthesis and 5’-RNA Capping. Viruses 7, 4640–4656 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van den Elsen, K., Quek, J. P. & Luo, D. Molecular Insights into the Flavivirus Replication Complex. Viruses 13, 956 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, Q. et al. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell 19, 663–671 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franke, T. F. PI3K/Akt: getting it right matters. Oncogene 27, 6473–6488 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parisien, J.-P., Lenoir, J. J., Alvarado, G. & Horvath, C. M. The Human STAT2 Coiled-Coil Domain Contains a Degron for Zika Virus Interferon Evasion. J. Virol. 96, e0130121 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Xia, H. et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9, 414 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. et al. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 3, 17006 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, Q. et al. Making sense of flavivirus non-strctural protein 1 in innate immune evasion and inducing tissue-specific damage. Virus Res. 336, 199222 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perera, D. R., Ranadeva, N. D., Sirisena, K. & Wijesinghe, K. J. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect. Dis. 10, 20–56 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, L. et al. An evolutionarily conserved ubiquitin ligase drives infection and transmission of flaviviruses. Proc. Natl Acad. Sci. USA 121, e2317978121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petersen, L. R., Jamieson, D. J. & Honein, M. A. Zika Virus. N. Engl. J. Med. 375, 294–295 (2016).

    PubMed 

    Google Scholar 

  • Hills, S. L., Fischer, M. & Petersen, L. R. Epidemiology of Zika Virus Infection. J. Infect. Dis. 216, S868–S874 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sekaran, S. D. et al. Host immune response against DENV and ZIKV infections. Front Cell Infect. Microbiol 12, 975222 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Besnard, M. et al. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Eur. Surveill. 19, 20751 (2014).

    Article 

    Google Scholar 

  • Russell, K. et al. Male-to-Female Sexual Transmission of Zika Virus-United States, January-April 2016. Clin. Infect. Dis. 64, 211–213 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Leyser, M. & Nascimento, O. J. M. Congenital Zika Virus Infection: Beyond Neonatal Microcephaly. JAMA Neurol. 74, 610 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Giraldo, M. I., Gonzalez-Orozco, M. & Rajsbaum, R. Pathogenesis of Zika Virus Infection. Annu Rev. Pathol. 18, 181–203 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lazear, H. M. et al. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 19, 720–730 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rossi, S. L. et al. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. Trop. Med. Hyg. 94, 1362–1369 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grant, A. et al. Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host Microbe 19, 882–890 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, A. et al. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep. 17, 1766–1775 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandes, N. C. et al. Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp. Toxicol. Pathol. 69, 63–71 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manangeeswaran, M., Ireland, D. D. & Verthelyi, D. Zika (PRVABC59) Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice. PLoS Pathog. 12, e1006004 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. et al. Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System. Viruses 10, 49 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dowall, S. D. et al. A Susceptible Mouse Model for Zika Virus Infection. PLoS Negl. Trop. Dis. 10, e0004658 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell 19, 593–598 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, D. R. et al. Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon. PLoS Negl. Trop. Dis. 11, e0005296 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aliota, M. T. et al. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Negl. Trop. Dis. 10, e0004682 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Govero, J. et al. Zika virus infection damages the testes in mice. Nature 540, 438–442 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, W. et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 168, 542 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan, J. F. et al. Zika Virus Infection in Dexamethasone-immunosuppressed Mice Demonstrating Disseminated Infection with Multi-organ Involvement Including Orchitis Effectively Treated by Recombinant Type I Interferons. EBioMedicine 14, 112–122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuler-Faccini, L. et al. Possible Association Between Zika Virus Infection and Microcephaly – Brazil, 2015. MMWR Morb. Mortal. Wkly Rep. 65, 59–62 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Duarte, G. et al. Zika Virus Infection in Pregnant Women and Microcephaly. Rev. Bras. Ginecol. Obstet. 39, 235–248 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miner, J. J. et al. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise. Cell 165, 1081–1091 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siddharthan, V. et al. Zika virus infection of adult and fetal STAT2 knock-out hamsters. Virology 507, 89–95 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, L. J. et al. Zika Virus Infection in Syrian Golden Hamsters and Strain 13 Guinea Pigs. Am. J. Trop. Med Hyg. 98, 864–867 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y.-Q. et al. Intranasal infection and contact transmission of Zika virus in guinea pigs. Nat. Commun. 8, 1648 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bierle, C. J. et al. Assessing Zika virus replication and the development of Zika-specific antibodies after a mid-gestation viral challenge in guinea pigs. PLoS One 12, e0187720 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, M. et al. A guinea pig model of Zika virus infection. Virol. J. 14, 75 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, H.-Y. et al. Aerosolized Zika virus infection in Guinea pigs. Emerg. Microbes Infect. 11, 2350–2358 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westrich, J. A. et al. Characterization of subclinical ZIKV infection in immune-competent guinea pigs and mice. J. Gen. Virol. 102, 001641 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutchinson, E. B. et al. The effect of Zika virus infection in the ferret. J. Comp. Neurol. 527, 1706–1719 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudley, D. M. et al. A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun. 7, 12204 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koenig, M. R. et al. Infection of the maternal-fetal interface and vertical transmission following low-dose inoculation of pregnant rhesus macaques (Macaca mulatta) with an African-lineage Zika virus. PLoS One 18, e0284964 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aid, M. et al. Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell 169, 610–620.e14 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsch, A. J. et al. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 13, e1006219 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osuna, C. E. et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat. Med. 22, 1448–1455 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X.-F. et al. Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates. EBioMedicine 12, 170–177 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woollard, S. M. et al. Preliminary Studies on Immune Response and Viral Pathogenesis of Zika Virus in Rhesus Macaques. Pathogens 7, 70 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosinski, J. R. et al. Frequent first-trimester pregnancy loss in rhesus macaques infected with African-lineage Zika virus. PLoS Pathog. 19, e1011282 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raasch, L. E. et al. Fetal loss in pregnant rhesus macaques infected with high-dose African-lineage Zika virus. PLoS Negl. Trop. Dis. 16, e0010623 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Block, L. N. et al. Embryotoxic impact of Zika virus in a rhesus macaque in vitro implantation model†. Biol. Reprod. 102, 806–816 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinbach, R. J. et al. A neonatal nonhuman primate model of gestational Zika virus infection with evidence of microencephaly, seizures and cardiomyopathy. PLoS One 15, e0227676 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinot, A. J. et al. Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell 173, 1111–1122.e10 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckman, D. et al. Neuroanatomical abnormalities in a nonhuman primate model of congenital Zika virus infection. Elife 11, e64734 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarantal, A. F. et al. Fetal Rhesus Monkey First Trimester Zika Virus Infection Impacts Cortical Development in the Second and Third Trimesters. Cereb. Cortex 31, 2309–2321 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Raper, J. et al. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat. Commun. 11, 2534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coffey, L. L. et al. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat. Commun. 9, 2414 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mavigner, M. et al. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci. Transl. Med. 10, eaao6975 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yiu, G. et al. Evolution of ocular defects in infant macaques following in utero Zika virus infection. JCI Insight 5, e143947 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudley, D. M. et al. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat. Commun. 8, 2096 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marlin, R. et al. Antiviral efficacy of favipiravir against Zika and SARS-CoV-2 viruses in non-human primates. Nat. Commun. 13, 5108 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lecouturier, V. et al. An optimized purified inactivated Zika vaccine provides sustained immunogenicity and protection in cynomolgus macaques. NPJ Vaccines 5, 19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breitbach, M. E. et al. Primary infection with dengue or Zika virus does not affect the severity of heterologous secondary infection in macaques. PLoS Pathog. 15, e1007766 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Alwis, R. et al. Systemic inflammation, innate immunity and pathogenesis after Zika virus infection in cynomolgus macaques are modulated by strain-specificity within the Asian lineage. Emerg. Microbes Infect. 10, 1457–1470 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Azar, S. R. et al. ZIKV Demonstrates Minimal Pathologic Effects and Mosquito Infectivity in Viremic Cynomolgus Macaques. Viruses 10, 661 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koide, F. et al. Development of a Zika Virus Infection Model in Cynomolgus Macaques. Front. Microbiol. 7, 2028 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, N. et al. Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques. Pathogens 11, 1033 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haddow, A. D. et al. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus. Emerg. Infect. Dis. 23, 1274–1281 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shofa, M. et al. Repeated Intravaginal Inoculation of Zika Virus Protects Cynomolgus Monkeys from Subcutaneous Superchallenge. Int J. Mol. Sci. 23, 14002 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haddow, A. D. et al. Modeling mosquito-borne and sexual transmission of Zika virus in an enzootic host, the African green monkey. PLoS Negl. Trop. Dis. 14, e0008107 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connor, M. A. et al. Early cellular innate immune responses drive Zika viral persistence and tissue tropism in pigtail macaques. Nat. Commun. 9, 3371 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams Waldorf, K. M. et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 24, 368–374 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams Waldorf, K. M. et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22, 1256–1259 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiu, C. Y. et al. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Sci. Rep. 7, 17126 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lum, F.-M. et al. Multimodal assessments of Zika virus immune pathophysiological responses in marmosets. Sci. Rep. 8, 17125 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, N. et al. High susceptibility, viral dynamics and persistence of South American Zika virus in New World monkey species. Sci. Rep. 9, 14495 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seferovic, M. et al. Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities. Sci. Rep. 8, 6851 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robbiani, D. F. et al. Risk of Zika microcephaly correlates with features of maternal antibodies. J. Exp. Med. 216, 2302–2315 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurung, S. et al. Translational Model of Zika Virus Disease in Baboons. J Virol. 92, e00186-18 (2018).

  • Gurung, S. et al. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathog. 15, e1007507 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurung, S. et al. Early and mid-gestation Zika virus (ZIKV) infection in the olive baboon (Papio anubis) leads to fetal CNS pathology by term gestation. PLoS Pathog. 18, e1010386 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peregrine, J. et al. Zika Virus Infection, Reproductive Organ Targeting, and Semen Transmission in the Male Olive Baboon. J. Virol. 94, e01434–19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Modjarrad, K. et al. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet 391, 563–571 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbink, P. et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353, 1129–1132 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muthumani, K. et al. In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. NPJ Vaccines 1, 16021 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dowd, K. A. et al. Rapid development of a DNA vaccine for Zika virus. Science 354, 237–240 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudinski, M. R. et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet 391, 552–562 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deering, R. P. et al. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 11, 885–899 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pardi, N. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chahal, J. S. et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbink, P., Stephenson, K. E. & Barouch, D. H. Zika virus vaccines. Nat. Rev. Microbiol 16, 594–600 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Combredet, C. et al. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J. Virol. 77, 11546–11554 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Camacho, C. et al. Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nat. Commun. 9, 2441 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sapparapu, G. et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540, 443–447 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stettler, K. et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353, 823–826 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barba-Spaeth, G. et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536, 48–53 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zou, J. & Shi, P. Y. Strategies for Zika drug discovery. Curr. Opin. Virol. 35, 19–26 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernatchez, J. A. et al. Drugs for the Treatment of Zika Virus Infection. J. Med Chem. 63, 470–489 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Julander, J. G. et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antivir. Res 137, 14–22 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardoso-Moreira, M. et al. Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Rep. 33, 108308 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target Ther. 8, 149 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein. Signal Transduct. Target Ther. 6, 389 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanhoutte, F. et al. Safety and immunogenicity of the measles vector-based SARS-CoV-2 vaccine candidate, V591, in adults: results from a phase 1/2 randomised, double-blind, placebo-controlled, dose-ranging trial. EBioMedicine 75, 103811 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Launay, O. et al. Safety and immunogenicity of a measles-vectored SARS-CoV-2 vaccine candidate, V591 / TMV-083, in healthy adults: results of a randomized, placebo-controlled Phase I study. EBioMedicine 75, 103810 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, G. et al. Clinical Evaluation of Ebola Virus Disease Therapeutics. Trends Mol. Med. 23, 820–830 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, P. B. et al. A Covid-19 Milestone Attained – A Correlate of Protection for Vaccines. N. Engl. J. Med. 387, 2203–2206 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bray, M. et al. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 178, 651–661 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arnason, G. The Emergence and Development of Animal Research Ethics: A Review with a Focus on Nonhuman Primates. Sci. Eng. Ethics 26, 2277–2293 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21, 162–177 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science, 369, 818–823 (2020).

  • FDA. Animal Rule Summary, < (2017).

  • McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369, 812–817 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 11, 3523 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Earle, K. A. et al. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 39, 4423–4428 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fong, Y. et al. Immune correlates analysis of the ENSEMBLE single Ad26.COV2.S dose vaccine efficacy clinical trial. Nat. Microbiol. 7, 1996–2010 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 5, eabd2071 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradfute, S. B. & Bavari, S. Correlates of immunity to filovirus infection. Viruses 3, 982–1000 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baize, S. et al. Inflammatory responses in Ebola virus-infected patients. Clin. Exp. Immunol. 128, 163–168 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jonkmans, N., D’Acremont, V. & Flahault, A. Scoping future outbreaks: a scoping review on the outbreak prediction of the WHO Blueprint list of priority diseases. BMJ Glob. Health 6, e006623 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rathinam, C. et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118, 3119–3128 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Willinger, T. et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc. Natl Acad. Sci. USA 108, 2390–2395 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strowig, T. et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−gamma(c)−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl Acad. Sci. USA 108, 13218–13223 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rongvaux, A. et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc. Natl Acad. Sci. USA 108, 2378–2383 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, H. et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 129, 959–969 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, R. et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat. Med. 22, 1351–1357 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sippel, T. R. et al. Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models. Blood Adv. 3, 268–274 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wahl, A. et al. Precision mouse models with expanded tropism for human pathogens. Nat. Biotechnol. 37, 1163–1173 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422–434 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roy, S. K. & Bhattacharjee, S. Dengue virus: epidemiology, biology, and disease aetiology. Can. J. Microbiol. 67, 687–702 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, Y. et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J. Virol. 94, e02015–e02019 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takada, A., Feldmann, H., Ksiazek, T. G. & Kawaoka, Y. Antibody-dependent enhancement of Ebola virus infection. J. Virol. 77, 7539–7544 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakayama, E. et al. Antibody-dependent enhancement of Marburg virus infection. J. Infect. Dis. 204, S978–S985 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuzmina, N. A. et al. Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Rep. 24, 1802–1815.e1805 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahrling, P. B. et al. Ebola hemorrhagic fever: evaluation of passive immunotherapy in nonhuman primates. J. Infect. Dis. 196, S400–S403 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Oswald, W. B. et al. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog. 3, e9 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dye, J. M. et al. Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc. Natl Acad. Sci. USA 109, 5034–5039 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, X. et al. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 4, 138ra181 (2012).

    Article 

    Google Scholar 

  • Wang, S. et al. Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nat. Commun. 11, 5752 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 34, 108699 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell 184, 3452–3466.e3418 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D. et al. The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates. bioRxiv, (2021).

  • Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tseng, C. T. et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 7, e35421 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munoz, F. M. et al. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 39, 3053–3066 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bewley, K. R. et al. Immunological and pathological outcomes of SARS-CoV-2 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques. Sci. Adv. 7, eabg7996 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, D. et al. CVnCoV and CV2CoV protect human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2. Nat. Commun. 12, 4048 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Messaoudi, I., Amarasinghe, G. K. & Basler, C. F. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nat. Rev. Microbiol. 13, 663–676, (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steiner, S. et al. SARS-CoV-2 biology and host interactions. Nat. Rev. Microbiol. 22, 206–225 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122–127 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cool, K. et al. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg. Microbes Infect. 11, 95–112 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rathnasinghe, R. et al. The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. medRxiv, (2021).

  • Wang, R. et al. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54, 1611–1621.e1615 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelnabi, R. et al. Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine 68, 103403 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thorne, L. G. et al. Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant. bioRxiv, (2021).

  • Kumar, A. et al. Emerging SARS-CoV-2 variants can potentially break set epidemiological barriers in COVID-19. J. Med. Virol. 94, 1300–1314 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yinda, C. K. et al. Prior aerosol infection with lineage A SARS-CoV-2 variant protects hamsters from disease, but not reinfection with B.1.351 SARS-CoV-2 variant. Emerg. Microbes Infect. 10, 1284–1292 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohandas, S. et al. SARS-CoV-2 Delta Variant Pathogenesis and Host Response in Syrian Hamsters. Viruses 13, 1773 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brustolin, M. et al. Protection against reinfection with D614- or G614-SARS-CoV-2 isolates in golden Syrian hamster. Emerg. Microbes Infect. 10, 797–809 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudreault, N. N. et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg. Microbes Infect. 9, 2322–2332 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marsh, G. A. et al. ChAdOx1 nCoV-19 (AZD1222) vaccine candidate significantly reduces SARS-CoV-2 shedding in ferrets. NPJ Vaccines 6, 67 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Melo, G. D. et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13, eabf8396 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Allnoch, L. et al. Vascular Inflammation Is Associated with Loss of Aquaporin 1 Expression on Endothelial Cells and Increased Fluid Leakage in SARS-CoV-2 Infected Golden Syrian Hamsters. Viruses 13, 639 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, K. et al. Vasculitis and Neutrophil Extracellular Traps in Lungs of Golden Syrian Hamsters With SARS-CoV-2. Front. Immunol. 12, 640842 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, L. et al. Gender associates with both susceptibility to infection and pathogenesis of SARS-CoV-2 in Syrian hamster. Signal Transduct. Target Ther. 6, 136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, T. et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588, 315–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rydyznski Moderbacher, C. et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 183, 996–1012.e1019 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frieman, M. B. et al. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog. 6, e1000849 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vijay, R. et al. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection. J. Exp. Med. 212, 1851–1868 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bajaj, V. et al. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front. Physiol. 11, 571416 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Speranza, E. et al. Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus macaques. Life Sci. Alliance 5, e202101314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, Y. et al. SARS-CoV-2 infection aggravates chronic comorbidities of cardiovascular diseases and diabetes in mice. Anim. Model Exp. Med 4, 2–15 (2021).

    Article 
    CAS 

    Google Scholar 

  • Blutt, S. E. & Estes, M. K. Organoid Models for Infectious Disease. Annu. Rev. Med. 73, 167–182 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, Y. et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589, 270–275 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928, (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, X. et al. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 165, 1238–1254 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, M. et al. Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Rep. 21, 517–532 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clevers, H. Modeling Development and Disease with Organoids. Cell 165, 1586–1597 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, R. et al. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nat. Biotechnol. 39, 747–753 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. et al. Systematic evaluation of machine learning methods for identifying human-pathogen protein-protein interactions. Brief. Bioinform 22, bbaa068 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hie, B., Zhong, E. D., Berger, B. & Bryson, B. Learning the language of viral evolution and escape. Science 371, 284–288 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bojar, D., Powers, R. K., Camacho, D. M. & Collins, J. J. Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions. Cell Host Microbe 29, 132–144.e133 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisch, D. et al. Defining host-pathogen interactions employing an artificial intelligence workflow. Elife 8, e40560 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv, H. et al. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief. Bioinform. 22, bbab320 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cardillo, A. G. et al. Towards in silico Process Modeling for Vaccines. Trends Biotechnol. 39, 1120–1130 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mullowney, M. W. et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 22, 895–916 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schadt, E. E., Friend, S. H. & Shaywitz, D. A. A network view of disease and compound screening. Nat. Rev. Drug Discov. 8, 286–295 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vatansever, S. et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 41, 1427–1473 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cumming, J. G. et al. Chemical predictive modelling to improve compound quality. Nat. Rev. Drug Discov. 12, 948–962 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 10, 197–208 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singhal, D. & Curatolo, W. Drug polymorphism and dosage form design: a practical perspective. Adv. Drug Deliv. Rev. 56, 335–347, (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sánchez-Valle, J. & Valencia, A. Molecular bases of comorbidities: present and future perspectives. Trends Genet 39, 773–786 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Perico, L. et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat. Rev. Nephrol. 17, 46–64 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bowen, E. T. et al. Ebola haemorrhagic fever: experimental infection of monkeys. Trans. R. Soc. Trop. Med. Hyg. 72, 188–191 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sword, J. et al. Computed Tomography Imaging for Monitoring of Marburg Virus Disease: a Nonhuman Primate Proof-Of-Concept Study. Microbiol. Spectr. 11, e0349422 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Cross, R. W. et al. Combination therapy protects macaques against advanced Marburg virus disease. Nat. Commun. 12, 1891 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carbonnelle, C. et al. Natural History of to Support Medical Countermeasure Development. Vaccines 10, 963 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warren, T. K. et al. Delayed Time-to-Treatment of an Antisense Morpholino Oligomer Is Effective against Lethal Marburg Virus Infection in Cynomolgus Macaques. PLoS Negl. Trop. Dis. 10, e0004456 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. et al. MERS-CoV infection causes brain damage in human DPP4-transgenic mice through complement-mediated inflammation. J. Gen. Virol. 102, 001667 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 89, 579–586 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, A. J. et al. Severe Acute Respiratory Syndrome Coronavirus 2 Infects and Damages the Mature and Immature Olfactory Sensory Neurons of Hamsters. Clin. Infect. Dis. 73, e503–e512 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y. et al. Ferrets: A powerful model of SARS-CoV-2. Zool. Res. 44, 323–330 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. Lymphocyte cell population as a potential hematological index for early diagnosis of COVID-19. Cell Mol. Biol. 66, 202–206 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ware, L. B. & Matthay, M. A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349, (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinovac. Sinovac Receives Conditional Marketing Authorization in China for its COVID-19 Vaccine (Sinovac, 2021).

  • Castelli, J. M. et al. Effectiveness of mRNA-1273, BNT162b2, and BBIBP-CorV vaccines against infection and mortality in children in Argentina, during predominance of delta and omicron covid-19 variants: test negative, case-control study. BMJ 379, e073070 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Xia, S. et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA 324, 951–960 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tai, W. et al. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res. 30, 932–935 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keech, C. et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 383, 2320–2332 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stuart, A. S. V. et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet 399, 36–49 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundgren, J. D. et al. A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19. N. Engl. J. Med. 384, 905–914 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tignor, G. H. & Hanham, C. A. Ribavirin efficacy in an in vivo model of Crimean-Congo hemorrhagic fever virus (CCHF) infection. Antivir. Res. 22, 309–325 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zivcec, M. et al. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon α/β receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J. Infect. Dis. 207, 1909–1921 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bente, D. A. et al. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J. Virol. 84, 11089–11100 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aligholipour Farzani, T. et al. Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNα/β/γR−/− Mice Models. Viruses 11, 237 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ranadheera, C. et al. Characterization of a novel STAT 2 knock-out hamster model of Crimean-Congo hemorrhagic fever virus pathogenesis. Sci. Rep. 10, 12378 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haddock, E. et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat. Microbiol. 3, 556–562 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwarz, M. M. et al. Rift Valley Fever Virus Infects the Posterior Segment of the Eye and Induces Inflammation in a Rat Model of Ocular Disease. J. Virol. 96, e0111222 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Anderson, G. W. Jr., Slone, T. W. Jr. & Peters, C. J. Pathogenesis of Rift Valley fever virus (RVFV) in inbred rats. Microb. Pathogenesis 2, 283–293 (1987).

    Article 

    Google Scholar 

  • Morrill, J. C. et al. Pathogenesis of Rift Valley fever in rhesus monkeys: role of interferon response. Arch. Virol. 110, 195–212 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, D. R. et al. Development of a novel nonhuman primate model for Rift Valley fever. J. Virol. 86, 2109–2120 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yedloutschnig, R. J., Dardiri, A. H., Mebus, C. A. & Walker, J. S. Abortion in vaccinated sheep and cattle after challenge with Rift Valley fever virus. Vet. Rec. 109, 383–384 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rippy, M. K., Topper, M. J., Mebus, C. A. & Morrill, J. C. Rift Valley fever virus-induced encephalomyelitis and hepatitis in calves. Vet. Pathol. 29, 495–502 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morrill, J. C. et al. Rift Valley fever MP-12 vaccine elicits an early protective immune response in mice. Vaccine 40, 7255–7261 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anthony, T. et al. Vaccination with Rift Valley fever virus live attenuated vaccine strain Smithburn caused meningoencephalitis in alpacas. J. Vet. Diagn. Invest. 33, 777–781 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makoschey, B. et al. Rift Valley Fever Vaccine Virus Clone 13 Is Able to Cross the Ovine Placental Barrier Associated with Foetal Infections, Malformations, and Stillbirths. PLoS Negl. Trop. Dis. 10, e0004550 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caplen, H., Peters, C. J. & Bishop, D. H. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol. 66, 2271–2277 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Wichgers Schreur, P. J., Oreshkova, N., Moormann, R. J. & Kortekaas, J. Creation of Rift Valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging. J. Virol. 88, 10883–10893 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stachowiak, B. & Weingartl, H. M. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells. PloS One 7, e30855 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mungall, B. A. et al. Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J. Virol. 80, 12293–12302 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bossart, K. N. et al. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 4, 146ra107 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeitlin, L. et al. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci. Transl. Med. 16, eadl2055 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, K.-Y. et al. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res. 26, 645–654 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magnani, D. M. et al. Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques. Nat. Commun. 9, 1624 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsch, A. J. et al. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat. Commun. 9, 263 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holmes, E. C. et al. The origins of SARS-CoV-2: A critical review. Cell 184, 4848–4856 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sall, A. A. et al. Origin of 1997-98 Rift Valley fever outbreak in East Africa. Lancet 352, 1596–1597 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monath, T. P. Lassa fever: review of epidemiology and epizootiology. Bull. World Health Organ. 52, 577–592, (1975).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kindhauser, M. K. et al. Zika: the origin and spread of a mosquito-borne virus. Bull. World Health Organ. 94, 675–686c (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plowright, R. K. et al. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282, 20142124 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *