September 13, 2024
Molecular insights of exercise therapy in disease prevention and treatment
  • Lee, I.-M. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knight, J. A. Physical inactivity: associated diseases and disorders. Ann. Clin. Lab. Sci. 42, 320–337 (2012).

  • Kyu, H. H. et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 354, i3857 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pate, R. R. et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273, 402–407 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. Wash. DC 1974 100, 126–131 (1985).

    CAS 

    Google Scholar 

  • Gleeson, M. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11, 607–615 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kujala, U. M. Evidence on the effects of exercise therapy in the treatment of chronic disease. Br. J. Sports Med. 43, 550–555 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedersen, B. K. & Saltin, B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25, 1–72 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Heinonen, I. et al. Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology 29, 421–436 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGee, S. L. & Hargreaves, M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 16, 495–505 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruegsegger, G. N. & Booth, F. W. Health benefits of exercise. Cold Spring Harb. Perspect. Med. 8, a029694 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Safdar, A. & Tarnopolsky, M. A. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb. Perspect. Med. 8, a029827 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, L., Diaz-Canestro, C., Wang, Y., Tse, M. A. & Xu, A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol. Med. 16, 432–444 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashcroft, S. P., Stocks, B., Egan, B. & Zierath, J. R. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab. 36, 278–300 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, V. L. et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature 606, 785–790 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. et al. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct. Target. Ther. 7, 306 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hojman, P., Gehl, J., Christensen, J. F. & Pedersen, B. K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 27, 10–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, D. & Meng, J. Exercise for prevention and relief of cardiovascular disease: prognoses, mechanisms, and approaches. Oxid. Med. Cell. Longev. 2019, 1–11 (2019).

    Google Scholar 

  • Wang, Q. & Zhou, W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. J. Sport Health Sci. 10, 201–210 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J., Zhou, R., Feng, Y. & Cheng, L. Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct. Target. Ther. 7, 1–24 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, S. et al. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct. Target. Ther. 8, 116 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreira, J. B. N., Wohlwend, M. & Wisløff, U. Exercise and cardiac health: physiological and molecular insights. Nat. Metab. 2, 829–839 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gubert, C. & Hannan, A. J. Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat. Rev. Drug Discov. 20, 862–879 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Darragh, I. A. J. & Egan, B. Considerations for exerkine research focusing on the response to exercise training. J. Sport Health Sci. 13, 130–132 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Reghupaty, S. C., Dall, N. R. & Svensson, K. J. Hallmarks of the metabolic secretome. Trends Endocrinol. Metab. 35, 49–61 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baker, S. A. & Rutter, J. Metabolites as signalling molecules. Nat. Rev. Mol. Cell Biol. 24, 355–374 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lone, J. B., Long, J. Z. & Svensson, K. J. Size matters: the biochemical logic of ligand type in endocrine crosstalk. Life Metab. 3, load048 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Follistatin-like 1 as a novel adipomyokine related to insulin resistance and physical activity. J. Clin. Endocrinol. Metab. 105, e4499–e4509 (2020).

    Article 

    Google Scholar 

  • Nam, J. S. et al. Follistatin‐like 1 is a myokine regulating lipid mobilization during endurance exercise and recovery. Obesity 32, 352–362 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kon, M., Ebi, Y. & Nakagaki, K. Effects of acute sprint interval exercise on follistatin-like 1 and apelin secretions. Arch. Physiol. Biochem. 127, 223–227 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nam, H.-J., Kim, I., Bowie, J. U. & Kim, S. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network. Sci. Rep. 5, 9576 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130.e16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mi, M. Y. et al. Plasma proteomic kinetics in response to acute exercise. Mol. Cell. Proteom. 22, 100601 (2023).

    Article 
    CAS 

    Google Scholar 

  • Parker, B. L. et al. Multiplexed temporal quantification of the exercise-regulated plasma peptidome. Mol. Cell. Proteom. 16, 2055–2068 (2017).

    Article 
    CAS 

    Google Scholar 

  • Robbins, J. M. et al. Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nat. Metab. 3, 786–797 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robbins, J. M. et al. Plasma proteomic changes in response to exercise training are associated with cardiorespiratory fitness adaptations. JCI Insight 8, e165867 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, W. et al. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab. 35, 1261–1279.e11 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brooks, G. A. The science and translation of Lactate shuttle theory. Cell Metab. 27, 757–785 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabinowitz, J. D. & Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2, 566–571 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, G. A. Lactate as a fulcrum of metabolism. Redox Biol. 35, 101454 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, G. A. et al. Lactate as a major myokine and exerkine. Nat. Rev. Endocrinol. 18, 712–712 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Howarth, K. R., LeBlanc, P. J., Heigenhauser, G. J. F. & Gibala, M. J. Effect of endurance training on muscle TCA cycle metabolism during exercise in humans. J. Appl. Physiol. 97, 579–584 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schranner, D., Kastenmüller, G., Schönfelder, M., Römisch-Margl, W. & Wackerhage, H. Metabolite concentration changes in humans after a bout of exercise: a systematic review of exercise metabolomics studies. Sports Med. – Open 6, 11 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreira, L. M. R. et al. Intermediary metabolism: an intricate network at the crossroads of cell fate and function. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 1866, 165887 (2020).

    Article 
    CAS 

    Google Scholar 

  • Veerappa, S. & McClure, J. Intermediary metabolism. Anaesth. Intensive Care Med. 21, 162–167 (2020).

    Article 

    Google Scholar 

  • Lewis, G. D. et al. Metabolic signatures of exercise in human plasma. Sci. Transl. Med. 2, 33a37 (2010).

  • Abdelmoez, A. M. et al. Cell selectivity in succinate receptor SUCNR1 /GPR91 signaling in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 324, E289–E298 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reddy, A. et al. pH-Gated succinate secretion regulates muscle remodeling in response to exercise. Cell 183, 62–75.e17 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Succinate induces skeletal muscle fiber remodeling via SUCNR1 signaling. EMBO Rep. 20, e47892 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reddy, A. et al. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. Nat. Metab. 6, 567–577 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stanford, K. I. et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1111–1120.e3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitase, Y. et al. β-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep. 22, 1531–1544 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, L. D. et al. β-aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morville, T., Sahl, R. E., Moritz, T., Helge, J. W. & Clemmensen, C. Plasma metabolome profiling of resistance exercise and endurance exercise in humans. Cell Rep. 33, 108554 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nemeth, K., Bayraktar, R., Ferracin, M. & Calin, G. A. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211–232 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184, 2633–2648.e19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, Z. et al. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci. Rep. 4, 5150 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Just, J. et al. Blood flow-restricted resistance exercise alters the surface profile, miRNA cargo and functional impact of circulating extracellular vesicles. Sci. Rep. 10, 5835 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, C. et al. Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med. Sci. Sports Exerc. 50, 2024–2032 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Warnier, G. et al. Effects of a 6-wk sprint interval training protocol at different altitudes on circulating extracellular vesicles. Med. Sci. Sports Exerc. 55, 46–54 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bye, A. et al. Circulating microRNAs and aerobic fitness – the HUNT study. PLoS ONE 8, e57496 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutkovskiy, A. et al. Circulating microRNA-210 concentrations in patients with acute heart failure: data from the Akershus cardiac examination 2 study. Clin. Chem. 67, 889–898 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Røsjø, H. et al. Prognostic value of circulating MicroRNA-210 levels in patients with moderate to severe aortic stenosis. PLoS One 9, e91812 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bye, A. et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals—the HUNT study. J. Mol. Cell. Cardiol. 97, 162–168 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stølen, T. O. et al. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. J. Mol. Cell. Cardiol. 148, 106–119 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bei, Y. et al. Exercise-induced miR-210 promotes cardiomyocyte proliferation and survival and mediates exercise-induced cardiac protection against ischemia/reperfusion injury. Research 7, 0327 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotewitsch, M., Heimer, M., Schmitz, B. & Mooren, F. C. Non-coding RNAs in exercise immunology: a systematic review. J. Sport Health Sci. (2023).

  • Zhang, T. et al. miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. J. Immunol. 201, 2165–2175 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, Z. et al. Regulation of miR-181a expression in T cell aging. Nat. Commun. 9, 3060 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miranda, K. et al. MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. Int. J. Obes. 42, 1140–1150 (2018).

    Article 
    CAS 

    Google Scholar 

  • Silva, G. J. J., Bye, A., El Azzouzi, H. & Wisløff, U. MicroRNAs as important regulators of exercise adaptation. Prog. Cardiovasc. Dis. 60, 130–151 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Russell, A. P. et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short‐term endurance training. J. Physiol. 591, 4637–4653 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safdar, A., Abadi, A., Akhtar, M., Hettinga, B. P. & Tarnopolsky, M. A. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLOS One 4, e5610 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonilauri, B. & Dallagiovanna, B. Long non-coding RNAs are differentially expressed after different exercise training programs. Front. Physiol. 11, 567614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wohlwend, M. et al. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci. Transl. Med. 13, eabc7367 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trewin, A. J. et al. Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle. BMC Biol. 20, 164 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, W., Ye, Q. & Dong, Y. Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis. Nanomed. Nanotechnol. Biol. Med. 55, 102717 (2024).

    Article 
    CAS 

    Google Scholar 

  • Done, A. J. & Traustadóttir, T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 10, 191–199 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, R. et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144, 303–317 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H. et al. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 145, 1218–1233 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. Circ-Ddx60 contributes to the antihypertrophic memory of exercise hypertrophic preconditioning. J. Adv. Res. 46, 113–121 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia–reperfusion injury. Cardiovasc. Res. 119, 2638–2652 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sen, R., Ghosal, S., Das, S., Balti, S. & Chakrabarti, J. Competing endogenous RNA: the key to posttranscriptional regulation. Sci. World J. 2014, 896206 (2014).

    Article 

    Google Scholar 

  • Nie, M., Liu, Q. & Yan, C. Construction of a novel lncRNA-miRNA-mRNA competing endogenous RNA network in muscle in response to exercise training. Gen. Physiol. Biophys. 42, 123–133 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, J. et al. LncRNA/miRNA/mRNA ceRNA network analysis in spinal cord injury rat with physical exercise therapy. PeerJ 10, e13783 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nat. Commun. 13, 6762 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, L. et al. Physical exercise prevented stress‐induced anxiety via improving brain RNA methylation. Adv. Sci. 9, 2105731 (2022).

    Article 
    CAS 

    Google Scholar 

  • Subbotina, E. et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl Acad. Sci. 112, 16042–16047 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ingerslev, B. et al. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP. Mol. Metab. 6, 1286–1295 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, Z. et al. Longterm exercise-derived exosomal miR-342-5p: a novel exerkine for cardioprotection. Circ. Res. 124, 1386–1400 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, B. D. & Tai, P.-C. The mechanism of protein secretion across membranes. Nature 283, 433–438 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hegde, R. S. & Keenan, R. J. The mechanisms of integral membrane protein biogenesis. Nat. Rev. Mol. Cell Biol. 23, 107–124 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hosoya, M. et al. Molecular and functional characteristics of APJ. J. Biol. Chem. 275, 21061–21067 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kawamata, Y. et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta BBA – Mol. Cell Res. 1538, 162–171 (2001).

    Article 
    CAS 

    Google Scholar 

  • Kelly, R. B. Pathways of protein secretion in eukaryotes. Science 230, 25–32 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148–155 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rabouille, C. Pathways of unconventional protein secretion. Trends Cell Biol. 27, 230–240 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sahlin, K., Katz, A. & Henriksson, J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem. J. 245, 551–556 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spriet, L. L., Howlett, R. A. & Heigenhauser, G. J. F. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 32, 756–763 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).

    Article 

    Google Scholar 

  • Xu, R. et al. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15, 617–638 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hill, A. F. Extracellular vesicles and neurodegenerative diseases. J. Neurosci. 39, 9269–9273 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 23, 236–250 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hendrix, A. et al. Extracellular vesicle analysis. Nat. Rev. Methods Prim. 3, 56 (2023).

    Article 
    CAS 

    Google Scholar 

  • Frühbeis, C., Helmig, S., Tug, S., Simon, P. & Krämer‐Albers, E. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 4, 28239 (2015).

    Article 
    PubMed 

    Google Scholar 

  • McIlvenna, L. C. et al. Single vesicle analysis reveals the release of tetraspanin positive extracellular vesicles into circulation with high intensity intermittent exercise. J. Physiol. 601, 5093–5106 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delgado-Peraza, F. et al. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer’s disease. Alzheimers Res. Ther. 15, 156 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, S. et al. Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk. Cell Metab. 35, 2028–2043.e7 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, B. et al. Red blood cell extracellular vesicles deliver therapeutic siRNAs to skeletal muscles for treatment of cancer cachexia. Mol. Ther. 31, 1418–1436 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251.e4 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vechetti, I. J., Valentino, T., Mobley, C. B. & McCarthy, J. J. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J. Physiol. 599, 845–861 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bayraktar, R., Van Roosbroeck, K. & Calin, G. A. Cell‐to‐cell communication: microRNAs as hormones. Mol. Oncol. 11, 1673–1686 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, T. et al. EVmiRNA: a database of miRNA profiling in extracellular vesicles. Nucleic Acids Res 47, D89–D93 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mittelbrunn, M. & Sánchez-Madrid, F. Intercellular communication: diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol. 13, 328–335 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doncheva, A. I. et al. Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol. 236, e13862 (2022).

    Article 
    CAS 

    Google Scholar 

  • Peng, H. et al. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab. 34, 1168–1182.e6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Islam, M. R. et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 3, 1058–1070 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Aoi, W. et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62, 882–889 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jørgensen, L. H. et al. SPARC interacts with actin in skeletal muscle in vitro and in vivo. Am. J. Pathol. 187, 457–474 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gu, H. et al. Soluble klotho improves hepatic glucose and lipid homeostasis in type 2 diabetes. Mol. Ther. Methods Clin. Dev. 18, 811–823 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, Z., Zheng, L., Huang, H., Feng, Y. & Shi, R. α-Klotho expression in mouse tissues following acute exhaustive exercise. Front. Physiol. 10, 1498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seldin, M. M., Peterson, J. M., Byerly, M. S., Wei, Z. & Wong, G. W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem. 287, 11968–11980 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Nardo, W. et al. Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism. Mol. Metab. 60, 101491 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chong, M. C., Silva, A., James, P. F., Wu, S. S. X. & Howitt, J. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD + activity in recipient cells. Aging Cell 21, e13647 (2022).

  • Orange, S. T. et al. Acute aerobic exercise‐conditioned serum reduces colon cancer cell proliferation in vitro through interleukin‐6‐induced regulation of DNA damage. Int. J. Cancer 151, 265–274 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasper, A. M., Turner, D. C., Martin, N. R. W. & Sharples, A. P. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. J. Cell. Physiol. 233, 1985–1998 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lautaoja, J. H. et al. Mimicking exercise in vitro: effects of myotube contractions and mechanical stretch on omics. Am. J. Physiol. -Cell Physiol. 324, C886–C892 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watanabe, L. P. & Riddle, N. C. New opportunities: Drosophila as a model system for exercise research. J. Appl. Physiol. 127, 482–490 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laranjeiro, R., Harinath, G., Burke, D., Braeckman, B. P. & Driscoll, M. Single swim sessions in C. elegans induce key features of mammalian exercise. BMC Biol. 15, 30 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laranjeiro, R. et al. Swim exercise in Caenorhabditis elegans extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proc. Natl Acad. Sci. 116, 23829–23839 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poole, D. C. et al. Guidelines for animal exercise and training protocols for cardiovascular studies. Am. J. Physiol. Heart Circ. Physiol. 318, H1100–H1138 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crane, J. D. et al. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging. Aging Cell 14, 625–634 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaweewannakorn, C. et al. Exercise‐evoked intramuscular neutrophil‐endothelial interactions support muscle performance and GLUT4 translocation: a mouse gnawing model study. J. Physiol. 598, 101–122 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Correia, J. C. et al. Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity. Cell Metab. 33, 2215–2230.e8 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dray, C. et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 8, 437–445 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Loro, E. et al. Effect of interleukin-15 receptor alpha ablation on the metabolic responses to moderate exercise simulated by in vivo isometric muscle contractions. Front. Physiol. 10, 1439 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nyasha, M. R. et al. Effects of CX3CR1 and CXCR2 antagonists on running-dependent intramuscular neutrophil recruitments and myokine upregulation. Am. J. Physiol. Endocrinol. Metab. 324, E375–E389 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takahashi, H. et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 1, 291–303 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vinel, C. et al. The exerkine apelin reverses age-associated sarcopenia. Nat. Med. 24, 1360–1371 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature 578, 605–609 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bjørnholt, J. V. et al. Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men. Diabetes Care 22, 45–49 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Rao Kondapally Seshasai, S. et al. The emerging risk factors collaboration. diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

  • Halbgebauer, D. et al. Latent TGFβ-binding proteins regulate UCP1 expression and function via TGFβ2. Mol. Metab. 53, 101336 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gumucio, J. P., Sugg, K. B. & Mendias, C. L. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc. Sport Sci. Rev. 43, 93–99 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Budagian, V., Bulanova, E., Paus, R. & Bulfonepaus, S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17, 259–280 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quinn, L. S. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition. J. Anim. Sci. 86, E75–E83 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tamura, Y. et al. Upregulation of circulating IL-15 by treadmill running in healthy individuals: Is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr. J. 58, 211–215 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quinn, L. S., Anderson, B. G., Strait-Bodey, L., Stroud, A. M. & Argilés, J. M. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Endocrinol. Metab. 296, E191–E202 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nielsen, A. R. et al. Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J. Clin. Endocrinol. Metab. 93, 4486–4493 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsukawa, N. et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl Acad. Sci. 96, 7403–7408 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Y. et al. Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway. Mol. Med. Rep. 16, 7361–7366 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gordan, R., Gwathmey, J. K. & Xie, L.-H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavin, K. M. et al. State of knowledge on molecular adaptations to exercise in humans: historical perspectives and future directions. Compr. Physiol. 12, 3193–3279 (2022).

  • Lu, L., Wu, D., Li, L. & Chen, L. Apelin/APJ system: a bifunctional target for cardiac hypertrophy. Int. J. Cardiol. 230, 164–170 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bei, Y. et al. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J. Sport Health Sci. 11, 466–478 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. W. et al. Effects of exercise training and TrkB blockade on cardiac function and BDNF-TrkB signaling postmyocardial infarction in rats. Am. J. Physiol. Heart Circ. Physiol. 315, H1821–H1834 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, H. W., Ahmad, M., Wang, H.-W. & Leenen, F. H. H. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction: cardiac brain-derived neurotrophic factor post myocardial infarction. Exp. Physiol. 102, 314–328 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slagsvold, K. H. et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial. Int. J. Cardiol. 177, 409–417 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Przyklenk, K. & Whittaker, P. Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J. Cardiovasc. Pharmacol. Ther. 16, 255–259 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Reboll, M. R. et al. Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science 376, 1343–1347 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, M.-X. et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 149, 1–9 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lavie, C. J., Milani, R. V. & Ventura, H. O. Obesity and cardiovascular disease. J. Am. Coll. Cardiol. 53, 1925–1932 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raschke, S. et al. Evidence against a beneficial effect of Irisin in humans. PLoS One 8, e73680 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Timmons, J. A., Baar, K., Davidsen, P. K. & Atherton, P. J. Is irisin a human exercise gene? Nature 488, E9–E10 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 175, 1756–1768.e17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mu, A. et al. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α. Mol. Cell 83, 1903–1920.e12 (2023).

    Article 

    Google Scholar 

  • Agudelo, L. Z. et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392.e5 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baht, G. S. et al. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nat. Metab. 2, 278–289 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, T. W. et al. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp. Mol. Med. 50, 1–11 (2018).

    PubMed 

    Google Scholar 

  • Lee, D. E. et al. Meteorin-like is an injectable peptide that can enhance regeneration in aged muscle through immune-driven fibro/adipogenic progenitor signaling. Nat. Commun. 13, 7613 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knudsen, J. G. et al. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS ONE 9, e84910 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. H. et al. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 8, e63517 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78, 223–241 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geng, L. et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep. 26, 2738–2752.e4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chilibeck, P. D., Sale, D. G. & Webber, C. E. Exercise and bone mineral density. Sports Med 19, 103–122 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Audzeyenka, I. et al. β-Aminoisobutyric acid (L-BAIBA) is a novel regulator of mitochondrial biogenesis and respiratory function in human podocytes. Sci. Rep. 13, 766 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colaianni, G. et al. The myokine irisin increases cortical bone mass. Proc. Natl Acad. Sci. 112, 12157–12162 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blazek, A. D. et al. Exercise-driven metabolic pathways in healthy cartilage. Osteoarthr. Cartil. 24, 1210–1222 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wu, D. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 8, 217 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gómez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R. & Edgerton, V. R. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 88, 2187–2195 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Kam, T.-I. et al. Amelioration of pathologic α-synuclein-induced Parkinson’s disease by irisin. Proc. Natl Acad. Sci. 119, e2204835119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambertus, M. et al. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA1. Acta Physiol. 231, e13587 (2021).

    Article 
    CAS 

    Google Scholar 

  • Morland, C. et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat. Commun. 8, 15557 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, P. et al. Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model. J. Neuroeng. Rehabil. 10, 43 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, C. et al. Platelet factors are induced by longevity factor klotho and enhance cognition in young and aging mice. Nat. Aging 3, 1067–1078 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schroer, A. B. et al. Platelet factors attenuate inflammation and rescue cognition in ageing. Nature 620, 1071–1079 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leiter, O. et al. Platelet-derived exerkine CXCL4/platelet factor 4 rejuvenates hippocampal neurogenesis and restores cognitive function in aged mice. Nat. Commun. 14, 4375 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leiter, O. et al. Exercise-induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem Cell Rep. 12, 667–679 (2019).

    Article 
    CAS 

    Google Scholar 

  • De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Binder, D. K. & Scharfman, H. E. Brain-derived neurotrophic factor. Growth Factors 22, 123–131 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, B. K. Physical activity and muscle–brain crosstalk. Nat. Rev. Endocrinol. 15, 383–392 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Brindle, N. P. J., Saharinen, P. & Alitalo, K. Signaling and Functions of Angiopoietin-1 in Vascular Protection. Circ. Res. 98, 1014–1023 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McClung, J. M. et al. Muscle cell derived angiopoietin-1 contributes to both myogenesis and angiogenesis in the ischemic environment. Front. Physiol. 6, 161 (2015).

  • Lauritzen, K. H. et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb. Cortex 24, 2784–2795 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Maugeri, G. et al. The role of exercise on peripheral nerve regeneration: from animal model to clinical application. Heliyon 7, e08281 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Udina, E., Puigdemasa, A. & Navarro, X. Passive and active exercise improve regeneration and muscle reinnervation after peripheral nerve injury in the rat. Muscle Nerve 43, 500–509 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Houle, J. D. & Côté, M. Axon regeneration and exercise‐dependent plasticity after spinal cord injury. Ann. N. Y. Acad. Sci. 1279, 154–163 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J.-S. & Höke, A. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors. PLoS One 9, e90245 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Preuss, C. V. & Anjum, F. Tocilizumab. [Updated 2022 Sep 21]. StatPearls [Internet] (2023).

  • Kistner, T. M., Pedersen, B. K. & Lieberman, D. E. Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 4, 170–179 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wedell-Neergaard, A.-S. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 29, 844–855.e3 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trinh, B. et al. Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. Cell Rep. Med. 2, 100396 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bay, M. L. et al. Human immune cell mobilization during exercise: effect of IL‐6 receptor blockade. Exp. Physiol. 105, 2086–2098 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Christensen, R. H. et al. Aerobic exercise induces cardiac fat loss and alters cardiac muscle mass through an interleukin-6 receptor–dependent mechanism: cardiac analysis of a double-blind randomized controlled clinical trial in abdominally obese humans. Circulation 140, 1684–1686 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Trinh, B. et al. Amino acid metabolism and protein turnover in lean and obese humans during exercise—effect of IL-6 receptor blockade. J. Clin. Endocrinol. Metab. 107, 1854–1864 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23, 554–562 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Djurhuus, S. S. et al. Exercise training to increase tumour natural killer‐cell infiltration in men with localised prostate cancer: a randomised controlled trial. BJU Int 131, 116–124 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schenk, A. et al. Distinct distribution patterns of exercise-induced natural killer cell mobilization into the circulation and tumor tissue of patients with prostate cancer. Am. J. Physiol. Cell Physiol. 323, C879–C884 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frydelund-Larsen, L. et al. Exercise induces interleukin-8 receptor (CXCR2) expression in human skeletal muscle: regulation of CXCR2 by exercise. Exp. Physiol. 92, 233–240 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stadtmann, A. & Zarbock, A. CXCR2: from bench to bedside. Front. Immunol. 3, 263 (2012).

  • Jurcevic, S. et al. The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions: effects of CXCR2 antagonism on human neutrophils. Br. J. Clin. Pharmacol. 80, 1324–1336 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffman-Goetz, L. & Pedersen, B. K. Exercise and the immune system: a model of the stress response? Immunol. Today 15, 382–387 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedersen, B. K. Effects of exercise on lymphocytes and cytokines. Br. J. Sports Med. 34, 246–251 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlagheck, M. L. et al. Cellular immune response to acute exercise: comparison of endurance and resistance exercise. Eur. J. Haematol. 105, 75–84 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peake, J. M., Neubauer, O., Walsh, N. P. & Simpson, R. J. Recovery of the immune system after exercise. J. Appl. Physiol. 122, 1077–1087 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leonard, J. et al. The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity. 50, 832–850 (2019).

  • Straat, M. E. et al. Stimulation of the beta-2-adrenergic receptor with salbutamol activates human brown adipose tissue. Cell Rep. Med. 4, 100942 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, J. S. et al. Circulating follistatin is liver-derived and regulated by the glucagon-to-insulin ratio. J. Clin. Endocrinol. Metab. 101, 550–560 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S.-J. et al. Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24, 1998–2008 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, X. et al. Mechanisms involved in follistatin‐induced hypertrophy and increased insulin action in skeletal muscle. J. Cachexia Sarcopenia Muscle 10, 1241–1257 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winbanks, C. E. et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J. Cell Biol. 197, 997–1008 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catoire, M. et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc. Natl. Acad. Sci. 111, E1043–52 (2014).

  • Norheim, F. et al. Regulation of angiopoietin-like protein 4 production during and after exercise. Physiol. Rep. 2, e12109 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gray, N. E. et al. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J. Biol. Chem. 287, 8444–8456 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Aerobic exercise improves endothelial function and serum adropin levels in obese adolescents independent of body weight loss. Sci. Rep. 7, 17717 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujie, S. et al. Aerobic exercise restores aging‐associated reductions in arterial adropin levels and improves adropin‐induced nitric oxide‐dependent vasorelaxation. J. Am. Heart Assoc. 10, e020641 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parlak, H. et al. Adropin increases with swimming exercise and exerts a protective effect on the brain of aged rats. Exp. Gerontol. 169, 111972 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. et al. Exercise suppresses NLRP3 inflammasome activation in mice with diet-induced NASH: a plausible role of adropin. Lab. Investig. 101, 369–380 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuramoto, K., Liang, H., Hong, J.-H. & He, C. Exercise-activated hepatic autophagy via the FN1-α5β1 integrin pathway drives metabolic benefits of exercise. Cell Metab. 35, 620–632.e5 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. An acute bout of exercise suppresses appetite via central lactate metabolism. Neuroscience 510, 49–59 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrière, A. et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63, 3253–3265 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Henstridge, D. C., Febbraio, M. A. & Hargreaves, M. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J. Appl. Physiol. 120, 683–691 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, T. et al. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy. Biochem. Biophys. Res. Commun. 460, 622–627 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Archer, A. E., Von Schulze, A. T. & Geiger, P. C. Exercise, heat shock proteins and insulin resistance. Philos. Trans. R. Soc. B Biol. Sci. 373, 20160529 (2018).

    Article 

    Google Scholar 

  • Noble, E. G., Milne, K. J. & Melling, C. W. J. Heat shock proteins and exercise: a primer. Appl. Physiol. Nutr. Metab. 33, 1050–1075 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bei, Y. et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury. Basic Res. Cardiol. 112, 38 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, H. S., Clarkson, P. M. & Scordilis, S. P. The repeated bout effect and heat shock proteins: intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans. Acta Physiol. Scand. 174, 47–56 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goto, C. et al. Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am. J. Hypertens. 20, 825–830 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jungersten, L., Ambring, A., Wall, B. & Wennmalm, Å. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J. Appl. Physiol. 82, 760–764 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Green, D. J., Maiorana, A., O’Driscoll, G. & Taylor, R. Effect of exercise training on endothelium‐derived nitric oxide function in humans. J. Physiol. 561, 1–25 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hambrecht, R. et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107, 3152–3158 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maiorana, A., O’Driscoll, G., Taylor, R. & Green, D. Exercise and the nitric oxide vasodilator system. Sports Med 33, 1013–1035 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Michel, T. & Feron, O. Nitric oxide synthases: which, where, how, and why? J. Clin. Investig. 100, 2146–2152 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, W., Kwak, H.-B., Kim, J.-H. & Lawler, J. M. Exercise training modulates the nitric oxide synthase profile in skeletal muscle from old rats. J. Gerontol. A. Biol. Sci. Med. Sci. 64A, 540–549 (2009).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Powers, S. K., Duarte, J., Kavazis, A. N. & Talbert, E. E. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol. 95, 1–9 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, F. et al. Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 7, 486 (2016).

  • Niess, A. M. Response and adaptation of skeletal muscle to exercise—the role of reactive oxygen species. Front. Biosci. 12, 4826 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leiter, O. et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab. 34, 408–423.e8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mulcahy, L. A., Pink, R. C. & Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article 

    Google Scholar 

  • Iannotta, D., Amruta, A., Kijas, A. W., Rowan, A. E. & Wolfram, J. Entry and exit of extracellular vesicles to and from the blood circulation. Nat. Nanotechnol. 19, 13–20 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • World Health Organization. Global health estimates 2019: deaths by cause, age, sex, by country and by region, 2000–2019. (2020).

  • Nocon, M. et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 15, 239–246 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Schmid, D. & Leitzmann, M. F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann. Oncol. 25, 1293–1311 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boniol, M., Dragomir, M., Autier, P. & Boyle, P. Physical activity and change in fasting glucose and HbA1c: a quantitative meta-analysis of randomized trials. Acta Diabetol. 54, 983–991 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jadhav, R. A., Hazari, A., Monterio, A., Kumar, S. & Maiya, A. G. Effect of physical activity intervention in prediabetes: a systematic review with meta-analysis. J. Phys. Act. Health 14, 745–755 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Stewart, R. A. H. et al. Physical activity and mortality in patients with stable coronary heart disease. J. Am. Coll. Cardiol. 70, 1689–1700 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Waschki, B. et al. Physical activity is the strongest predictor of all-cause mortality in patients With COPD. Chest 140, 331–342 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, C. et al. Pre‐stroke physical activity is associated with fewer post‐stroke complications, lower mortality and a better long‐term outcome. Eur. J. Neurol. 24, 1525–1531 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Global action plan on physical activity 2018–2030: more active people for a healthier world. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/item/9789241514187.

  • Fiuza-Luces, C., Garatachea, N., Berger, N. A. & Lucia, A. Exercise is the real polypill. Physiology 28, 330–358 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pareja-Galeano, H., Garatachea, N. & Lucia, A. Exercise as a polypill for chronic diseases. in Progress in Molecular Biology and Translational Science (ed. Bouchard, C.) vol. 135 497–526 (Academic Press, 2015).

  • Ho, M. et al. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA Pediatr. 167, 759 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Miller, W., Koceja, D. & Hamilton, E. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int. J. Obes. 21, 941–947 (1997).

    Article 
    CAS 

    Google Scholar 

  • Stoner, L. et al. Efficacy of exercise intervention for weight loss in overweight and obese adolescents: meta-analysis and implications. Sports Med 46, 1737–1751 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Huang, L., Fang, Y. & Tang, L. Comparisons of different exercise interventions on glycemic control and insulin resistance in prediabetes: a network meta-analysis. BMC Endocr. Disord. 21, 181 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonfante, I. L. P. et al. Combined training increases thermogenic fat activity in patients with overweight and type 2 diabetes. Int. J. Obes. 46, 1145–1154 (2022).

    Article 
    CAS 

    Google Scholar 

  • Martinez-Tellez, B. et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat. Commun. 13, 5259 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willis, L. H. et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol. 113, 1831–1837 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chew, N. W. S. et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 35, 414–428.e3 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gourdy, P. et al. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic‐euglycaemic clamp. Diabetes Obes. Metab. 20, 157–164 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shao, W. & Jin, T. Hepatic hormone FGF21 and its analogues in clinical trials. Chronic Dis. Transl. Med. 8, 19–25 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amaral, S. L., Papanek, P. E. & Greene, A. S. Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. Am. J. Physiol. Heart Circ. Physiol. 281, H1163–H1169 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, X. et al. Effect and mechanism of intermittent myocardial ischemia induced by exercise on coronary collateral formation. Am. J. Phys. Med. Rehabil. 87, 803–814 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wu, G. et al. Exercise-induced expression of VEGF and salvation of myocardium in the early stage of myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 296, H389–H395 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moien-Afshari, F. et al. Exercise restores endothelial function independently of weight loss or hyperglycaemic status in db/db mice. Diabetologia 51, 1327–1337 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cornelissen, V. A. & Smart, N. A. Exercise training for blood pressure: a systematic review and meta‐analysis. J. Am. Heart Assoc. 2, e004473 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Sousa, E. C. et al. Resistance training alone reduces systolic and diastolic blood pressure in prehypertensive and hypertensive individuals: meta-analysis. Hypertens. Res. 40, 927–931 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Whelton, S. P., Chin, A., Xin, X. & He, J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 136, 493 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Blumenthal, J. A. et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure. Arch. Intern. Med. 170, 126–135 (2010).

  • Ostman, C. et al. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc. Diabetol. 16, 110 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jhamnani, S. et al. Meta-analysis of the effects of lifestyle modifications on coronary and carotid atherosclerotic burden. Am. J. Cardiol. 115, 268–275 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Davignon, J. & Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 109, III27–32 (2004).

  • Ashor, A. W. et al. Exercise modalities and endothelial function: a systematic review and dose–response meta-analysis of randomized controlled trials. Sports Med. 45, 279–296 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Lawler, P. R., Filion, K. B. & Eisenberg, M. J. Efficacy of exercise-based cardiac rehabilitation post–myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am. Heart J. 162, 571–584.e2 (2011).

    Article 
    PubMed 

    Google Scholar 

  • ExTraMATCH Collaborative. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328, 189–0 (2004).

    Article 
    PubMed Central 

    Google Scholar 

  • Taylor, R. et al. Exercise‐based rehabilitation for heart failure. Cochrane Database Syst. Rev. 2014, CD003331 (2014).

  • Cornelis, J., Beckers, P., Taeymans, J., Vrints, C. & Vissers, D. Comparing exercise training modalities in heart failure: a systematic review and meta-analysis. Int. J. Cardiol. 221, 867–876 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Moreira, J. B. N. et al. Exercise reveals proline dehydrogenase as a potential target in heart failure. Prog. Cardiovasc. Dis. 62, 193–202 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Goto, C. et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108, 530–535 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Higashi, Y. et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 100, 1194–1202 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brame, A. L. et al. Design, characterization, and first-in-human study of the vascular actions of a novel biased apelin receptor agonist. Hypertension 65, 834–840 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Japp, A. G. et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121, 1818–1827 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amadio, P. et al. Patho- physiological role of BDNF in fibrin clotting. Sci. Rep. 9, 389 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, R. et al. Vascular endothelial growth factor gene transfer therapy for coronary artery disease: a systematic review and meta‐analysis. Cardiovasc. Ther. 36, e12461 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. 3, 24–40 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jabbour, A. et al. Parenteral administration of recombinant human neuregulin‐1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur. J. Heart Fail. 13, 83–92 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lenihan, D. J. et al. A phase I, single ascending dose study of cimaglermin alfa (Neuregulin 1β3) in patients with systolic dysfunction and heart failure. JACC Basic Transl. Sci. 1, 576–586 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkle, P. et al. A first-in-human study of AMG 986, a novel apelin receptor agonist, in healthy subjects and heart failure patients. Cardiovasc. Drugs Ther. 37, 743–755 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fontes, J. A., Rose, N. R. & Čiháková, D. The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine 74, 62–68 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steffl, M. et al. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin. Interv. Aging 12, 835–845 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckwée, D. et al. Exercise interventions for the prevention and treatment of sarcopenia. a systematic umbrella review. J. Nutr. Health Aging 23, 494–502 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Vlietstra, L., Hendrickx, W. & Waters, D. L. Exercise interventions in healthy older adults with sarcopenia: a systematic review and meta‐analysis. Australas. J. Ageing 37, 169–183 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Alves, C. R. R. et al. Exercise training reverses cancer-induced oxidative stress and decrease in muscle COPS2/TRIP15/ALIEN. Mol. Metab. 39, 101012 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, H.-J. et al. Effects of Exercise Programs in older adults with Muscle Wasting: A Systematic Review and Meta-analysis. Arch. Gerontol. Geriatr. 99, 104605 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Marques, E. A., Mota, J. & Carvalho, J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. AGE 34, 1493–1515 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Wolff, I., Van Croonenborg, J. J., Kemper, H. C. G., Kostense, P. J. & Twisk, J. W. R. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos. Int. 9, 1–12 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. Effect of exercise on bone mineral density among patients with osteoporosis and osteopenia: a systematic review and network meta‐analysis. J. Clin. Nurs. 31, 2100–2111 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gianola, S. et al. Effect of muscular exercise on patients with muscular dystrophy: a systematic review and meta-analysis of the literature. Front. Neurol. 11, 958 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammer, S. et al. Exercise training in duchenne muscular dystrophy: a systematic review and meta-analysis. J. Rehabil. Med. 54, jrm00250 (2022).

    PubMed 

    Google Scholar 

  • Mendell, J. R. et al. A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. Mol. Ther. 23, 192–201 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kanzleiter, T. et al. The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem. Biophys. Res. Commun. 450, 1089–1094 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Colaianni, G. et al. Irisin and bone: from preclinical studies to the evaluation of its circulating levels in different populations of human subjects. Cells 8, 451 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colaianni, G. et al. Irisin correlates positively with BMD in a cohort of older adult patients and downregulates the senescent marker p21 in osteoblasts. J. Bone Miner. Res. 36, 305–314 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, K., Qiao, X., Cai, Y., Li, A. & Shan, D. Lower circulating irisin in middle-aged and older adults with osteoporosis: a systematic review and meta-analysis. Menopause 26, 1302–1310 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lyssikatos, C. et al. l-β-aminoisobutyric acid, L-BAIBA, a marker of bone mineral density and body mass index, and D-BAIBA of physical performance and age. Sci. Rep. 13, 17212 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Commun. Biol. 3, 39 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falck, R. S., Davis, J. C., Best, J. R., Crockett, R. A. & Liu-Ambrose, T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol. Aging 79, 119–130 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J. & Rattray, B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52, 154–160 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Heyn, P., Abreu, B. C. & Ottenbacher, K. J. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch. Phys. Med. Rehabil. 85, 1694–1704 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Jia, R., Liang, J., Xu, Y. & Wang, Y. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatr. 19, 181 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, R. et al. Effects of physical exercise interventions on cognitive function in Parkinson’s disease: an updated systematic review and meta-analysis of randomized controlled trials. Parkinson. Relat. Disord. 117, 105908 (2023).

    Article 

    Google Scholar 

  • Kwakkel, G. et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 35, 2529–2539 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Stoller, O., De Bruin, E. D., Knols, R. H. & Hunt, K. J. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. BMC Neurol. 12, 45 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, L. et al. Association between physical exercise and stroke recurrence among first-ever ischemic stroke survivors. Sci. Rep. 11, 13372 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veldema, J. & Jansen, P. Ergometer training in stroke rehabilitation: systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 101, 674–689 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Veldema, J. & Jansen, P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clin. Rehabil. 34, 1173–1197 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kim, K. Y. et al. Loss of association between plasma irisin levels and cognition in Alzheimer’s disease. Psychoneuroendocrinology 136, 105624 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lourenco, M. V. et al. Cerebrospinal fluid irisin correlates with amyloid‐β, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement. Diagn. Assess. Dis. Monit. 12, e12034 (2020).

  • Zhang, X. et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. Npj Park. Dis. 9, 13 (2023).

    Article 

    Google Scholar 

  • Moxon, J. V. et al. The effect of angiopoietin-1 upregulation on the outcome of acute ischaemic stroke in rodent models: a meta-analysis. J. Cereb. Blood Flow. Metab. 39, 2343–2354 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venkat, P. et al. Treatment with an angiopoietin‐1 mimetic peptide promotes neurological recovery after stroke in diabetic rats. CNS Neurosci. Ther. 27, 48–59 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Golledge, J. et al. Plasma angiopoietin-1 is lower after ischemic stroke and associated with major disability but not stroke incidence. Stroke 45, 1064–1068 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huuha, A. M. et al. Can exercise training teach us how to treat Alzheimer’s disease? Ageing Res. Rev. 75, 101559 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tari, A. R. et al. Are the neuroprotective effects of exercise training systemically mediated? Prog. Cardiovasc. Dis. 62, 94–101 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kim, T.-W., Park, S.-S., Park, J.-Y. & Park, H.-S. Infusion of plasma from exercised mice ameliorates cognitive dysfunction by increasing hippocampal neuroplasticity and mitochondrial functions in 3xTg-AD mice. Int. J. Mol. Sci. 21, 3291 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tari, A. R. et al. Safety and efficacy of plasma transfusion from exercise-trained donors in patients with early Alzheimer’s disease: protocol for the ExPlas study. BMJ Open 12, e056964 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sha, S. J. et al. Safety, tolerability, and feasibility of young plasma infusion in the plasma for alzheimer symptom amelioration study: a randomized clinical trial. JAMA Neurol. 76, 35 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kurz, E. et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell 40, 720–737.e5 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • San-Millán, I. & Brooks, G. A. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis 38, 119–133 (2017).

    PubMed 

    Google Scholar 

  • Morrell, M. B. G. et al. Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr. Blood Cancer 66, e27835 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schadler, K. L. et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 7, 65429–65440 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, L., Christensen, J. F. & Hojman, P. Effects of exercise on tumor physiology and metabolism. Cancer J. 21, 111–116 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruiz-Casado, A. et al. Exercise and the hallmarks of cancer. Trends Cancer 3, 423–441 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, A. V. et al. American College of Sports Medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med. Sci. Sports Exerc. 51, 2391–2402 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Velthuis, M. J., Agasi-Idenburg, S. C., Aufdemkampe, G. & Wittink, H. M. The effect of physical exercise on cancer-related fatigue during cancer treatment: a meta-analysis of randomised controlled trials. Clin. Oncol. 22, 208–221 (2010).

    Article 
    CAS 

    Google Scholar 

  • Scott, J. M. et al. Efficacy of exercise therapy on cardiorespiratory fitness in patients with cancer: a systematic review and meta-analysis. J. Clin. Oncol. 36, 2297–2305 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Betof, A. S., Dewhirst, M. W. & Jones, L. W. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain. Behav. Immun. 30, S75–S87 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9, 34 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emery, A., Moore, S., Turner, J. E. & Campbell, J. P. Reframing how physical activity reduces the incidence of clinically-diagnosed cancers: appraising exercise-induced immuno-modulation as an integral mechanism. Front. Oncol. 12, 788113 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article 
    PubMed 

    Google Scholar 

  • López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. & Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. 35, 12–35 (2023).

    Article 
    PubMed 

    Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Schmauck-Medina, T. et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging 14, 6829–6839 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garatachea, N. et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 18, 57–89 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horowitz, A. M. & Villeda, S. A. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease. F1000Research 6, 1291 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouchard, J. & Villeda, S. A. Aging and brain rejuvenation as systemic events. J. Neurochem. 132, 5–19 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, T. T. et al. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J. Exp. Med. 218, e20210223 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Firth, J. et al. Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. NeuroImage 166, 230–238 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sofi, F. et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies: physical activity and risk of cognitive decline. J. Intern. Med. 269, 107–117 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, Y. K., Labban, J. D., Gapin, J. I. & Etnier, J. L. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453, 87–101 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leiter, O. & Walker, T. L. Platelets: the missing link between the blood and brain? Prog. Neurobiol. 183, 101695 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burnouf, T. & Walker, T. L. The multifaceted role of platelets in mediating brain function. Blood 140, 815–827 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bieri, G., Schroer, A. B. & Villeda, S. A. Blood-to-brain communication in aging and rejuvenation. Nat. Neurosci. 26, 379–393 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Brunet, A., Goodell, M. A. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Dollet, L. et al. Exercise-induced crosstalk between immune cells and adipocytes in humans: role of oncostatin-M. Cell Rep. Med. 5, 101348 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, W., Raun, S. H. & Long, J. Z. Molecular insights from multiomics studies of physical activity. Diabetes 73, 162–168 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mittenbühler, M. J. et al. Isolation of extracellular fluids reveals novel secreted bioactive proteins from muscle and fat tissues. Cell Metab. 35, 535–549.e7 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trappe, T. et al. Influence of age and resistance exercise on human skeletal muscle proteolysis: a microdialysis approach. J. Physiol. 554, 803–813 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanford, J. A. et al. Molecular Transducers of Physical Activity Consortium (MoTrPAC): mapping the dynamic responses to exercise. Cell 181, 1464–1474 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noone, J., Mucinski, J. M., DeLany, J. P., Sparks, L. M. & Goodpaster, B. H. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab. 36, 702–724 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanimura, Y. et al. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation. Physiol. Rep. 4, e12828 (2016).

  • Zhang, H. et al. GDF15 mediates the effect of skeletal muscle contraction on glucose-stimulated insulin secretion. Diabetes 72, 1070–1082 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, B. K., Steensberg, A. & Schjerling, P. Muscle‐derived interleukin‐6: possible biological effects. J. Physiol. 536, 329–337 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529, 237–242 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haugen, F. et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol. 298, C807–C816 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedersen, B. K. Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishizawa, H. et al. Musclin, a novel skeletal muscle-derived secretory factor. J. Biol. Chem. 279, 19391–19395 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pourranjbar, M. et al. Effects of aerobic exercises on serum levels of myonectin and insulin resistance in obese and overweight women. J. Med. Life 11, 381–386 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo. Mol. Ther. 10, 844–854 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Birot, O. J. G., Koulmann, N., Peinnequin, A. & Bigard, X. A. Exercise‐induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J. Physiol. 552, 213–221 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoier, B. et al. Pro‐ and anti‐angiogenic factors in human skeletal muscle in response to acute exercise and training. J. Physiol. 590, 595–606 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gavin, T. P. et al. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J. Appl. Physiol. 96, 19–24 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kraus, R. M., Stallings, H. W., Yeager, R. C. & Gavin, T. P. Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J. Appl. Physiol. 96, 1445–1450 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perakakis, N. et al. Physiology of activins/follistatins: associations with metabolic and anthropometric variables and response to exercise. J. Clin. Endocrinol. Metab. 103, 3890–3899 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, J. et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 152, 164–171 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khalafi, M., Aria, B., Symonds, M. E. & Rosenkranz, S. K. The effects of resistance training on myostatin and follistatin in adults: a systematic review and meta-analysis. Physiol. Behav. 269, 114272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xi, Y., Gong, D.-W. & Tian, Z. FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci. Rep. 6, 32424 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Görgens, S. W. et al. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch. Physiol. Biochem. 119, 75–80 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Strömberg, A. et al. CX 3 CL1—a macrophage chemoattractant induced by a single bout of exercise in human skeletal muscle. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 310, R297–R304 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Reza, M. M. et al. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 8, 1104 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roca-Rivada, A. et al. FNDC5/Irisin is not only a myokine but also an adipokine. PLoS One 8, e60563 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christiansen, T. et al. Diet-induced weight loss and exercise alone and in combination enhance the expression of adiponectin receptors in adipose tissue and skeletal muscle, but only diet-induced weight loss enhanced circulating adiponectin. J. Clin. Endocrinol. Metab. 95, 911–919 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lim, S. et al. Insulin-sensitizing effects of exercise on adiponectin and retinol-binding protein-4 concentrations in young and middle-aged women. J. Clin. Endocrinol. Metab. 93, 2263–2268 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kriketos, A. D. et al. Exercise increases adiponectin levels and insulin sensitivity in humans. Diabetes Care 27, 629–630 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Boucher, J. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146, 1764–1771 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Besse-Patin, A. et al. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int. J. Obes. 38, 707–713 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bae, J. Y. Aerobic exercise increases meteorin-like protein in muscle and adipose tissue of chronic high-fat diet-induced obese mice. BioMed. Res. Int. 2018, 1–8 (2018).

    Google Scholar 

  • Feng, L. et al. Exercise training protects against heart failure via expansion of myeloid-derived suppressor cells through regulating IL-10/STAT3/S100A9 pathway. Circ. Heart Fail. 15, e008550 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cabral‐Santos, C. et al. Interleukin‐10 responses from acute exercise in healthy subjects: a systematic review. J. Cell. Physiol. 234, 9956–9965 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Steensberg, A., Fischer, C. P., Keller, C., Møller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nieman, D. C. et al. Blood leukocyte mRNA expression for IL-10, IL-1Ra, and IL-8, but Not IL-6, increases after exercise. J. Interferon Cytokine Res. 26, 668–674 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedersen, B. K., Steensberg, A. & Schjerling, P. Exercise and interleukin-6. Curr. Opin. Hematol. 8, 137–141 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neves, R. V. P. et al. Dynamic not isometric training blunts osteo-renal disease and improves the sclerostin/FGF23/Klotho axis in maintenance hemodialysis patients: a randomized clinical trial. J. Appl. Physiol. 130, 508–516 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S., Kolset, S. O., Birkeland, K. I., Drevon, C. A. & Reine, T. M. Acute exercise increases syndecan-1 and -4 serum concentrations. Glycoconj. J. 36, 113–125 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffin, É. W. et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104, 934–941 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohammadzadeh, R. et al. Association of neuregulin-1β with physiological cardiac hypertrophy following acute and chronic exercise in athlete and non-athlete women. Hum. Physiol. 48, 102–107 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bugera, E. M., Duhamel, T. A., Peeler, J. D. & Cornish, S. M. The systemic myokine response of decorin, interleukin-6 (IL-6) and interleukin-15 (IL-15) to an acute bout of blood flow restricted exercise. Eur. J. Appl. Physiol. 118, 2679–2686 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jane, D. T. et al. Evidence for the involvement of cathepsin B in skeletal myoblast differentiation. J. Cell. Biochem. 84, 520–531 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Jurrissen, T. J. et al. Role of adropin in arterial stiffening associated with obesity and type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol. 323, H879–H891 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujie, S. et al. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults. Am. J. Physiol. Heart Circ. Physiol. 309, H1642–H1647 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, J. et al. Physical exercise modulates the microglial complement pathway in mice to relieve cortical circuitry deficits induced by mutant human TDP-43. Cell Rep. 42, 112240 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campisi, J. et al. Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 284, R520–R530 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morton, J. P., Kayani, A. C., McArdle, A. & Drust, B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 39, 643–662 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Joisten, N. et al. Exercise and the Kynurenine pathway: Current state of knowledge and results from a randomized cross-over study comparing acute effects of endurance and resistance training. Exerc. Immunol. Rev. 20, 24–42 (2020).

  • Elrod, J. W., Calvert, J. W., Gundewar, S., Bryan, N. S. & Lefer, D. J. Nitric oxide promotes distant organ protection: evidence for an endocrine role of nitric oxide. Proc. Natl Acad. Sci. 105, 11430–11435 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahlin, K. et al. Ultraendurance exercise increases the production of reactive oxygen species in isolated mitochondria from human skeletal muscle. J. Appl. Physiol. 108, 780–787 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rogers, P. J. et al. Catecholamine metabolic pathways and exercise training. Plasma and urine catecholamines, metabolic enzymes, and chromogranin-A. Circulation 84, 2346–2356 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jorfeldt, L., Juhlin-Dannfelt, A. & Karlsson, J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. 44, 350–352 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siqueira, I. R., Palazzo, R. P. & Cechinel, L. R. Circulating extracellular vesicles delivering beneficial cargo as key players in exercise effects. Free Radic. Biol. Med. 172, 273–285 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baggish, A. L. et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 589, 3983–3994 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Aerobic exercise suppresses cognitive injury in patients with Alzheimer’s disease by regulating long non-coding RNA TUG1. Neurosci. Lett. 826, 137732 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, T.-Q. et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 377, 987–991 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, C. et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henstridge, D. C. et al. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63, 1881–1894 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, H.-S. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J. 20, 446–456 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parcellier, A. et al. HSP27 is a ubiquitin-binding protein involved in i-Kbα proteasomal degradation. Mol. Cell. Biol. 23, 5790–5802 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, K.-J., Gaynor, R. B. & Kwak, Y. T. Heat shock protein 27 association with the iκb kinase complex regulates tumor necrosis factor α-induced NF-κB activation. J. Biol. Chem. 278, 35272–35278 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Francis, S. H., Busch, J. L. & Corbin, J. D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62, 525–563 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kojda, G., Cheng, Y. C., Burchfield, J. & Harrison, D. G. Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene. Circulation 103, 2839–2844 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Meijel, L. A. et al. Effect of lactate administration on cerebral blood flow during hypoglycemia in people with type 1 diabetes. BMJ Open Diabetes Res. Care 10, e002401 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charles, E. D. et al. Pegbelfermin (BMS‐986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: results from a randomized phase 2 study. Obesity 27, 41–49 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Talukdar, S. et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 23, 427–440 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, A. M. et al. Once‐weekly administration of a long‐acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non‐human primates. Diabetes Obes. Metab. 19, 1762–1772 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parry-Jones, A. R. et al. Phase II randomised, placebo-controlled, clinical trial of interleukin-1 receptor antagonist in intracerebral haemorrhage: BLOcking the Cytokine IL-1 in ICH (BLOC-ICH). Eur. Stroke J. 8, 819–827 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, C.-X. et al. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Sci. Rep. 6, 21924 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, A. B. et al. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat. Commun. 12, 1041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *