January 21, 2025
Vaccines for cancer prevention: exploring opportunities and navigating challenges
  • Mariotto, A. B., Enewold, L., Zhao, J., Zeruto, C. A. & Yabroff, K. R. Medical care costs associated with cancer survivorship in the United States. Cancer Epidemiol. Biomark. Prev. 29, 1304–1312 (2020).

    Article 

    Google Scholar 

  • Plotkin, S. A. & Plotkin, S. L. The development of vaccines: how the past led to the future. Nat. Rev. Microbiol. 9, 889–893 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shahzamani, K. et al. Vaccine design and delivery approaches for COVID-19. Int. Immunopharmacol. 100, 108086 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laureano, R. S. et al. Trial watch: dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 11, 2096363 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiller, J. T. et al. Cancer vaccines. Cancer Cell 40, 559–564 (2022). This review provides an overview of recent advancements in cancer vaccines.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singer, D. S. A new phase of the Cancer Moonshot to end cancer as we know it. Nat. Med. 28, 1345–1347 (2022). This article underscores the pivotal role of the Cancer Moonshot initiative in focusing on prevention approaches.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fact sheet: President Biden reignites cancer moonshot to end cancer as we know it. The White House. (2022).

  • Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011). This article establishes the concept of cancer immunoediting, which highlights the dual role of the immune system in both suppressing tumour formation and promoting cancer development.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687–692 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bol, K. F., Schreibelt, G., Gerritsen, W. R., de Vries, I. J. & Figdor, C. G. Dendritic cell-based immunotherapy: state of the art and beyond. Clin. Cancer Res. 22, 1897–1906 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 12, 5423–5434 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beatty, P. L. et al. Immunobiology and immunosurveillance in patients with intraductal papillary mucinous neoplasms (IPMNs), premalignant precursors of pancreatic adenocarcinomas. Cancer Immunol. Immunother. 65, 771–778 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gil Del Alcazar, C. R. et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 7, 1098–1115 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mascaux, C. et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 571, 570–575 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, M. H. et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med. 336, 1855–1859 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, M. H. et al. Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study. J. Natl Cancer Inst. 101, 1348–1355 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, L., Wang, Y. & Du, J. Human papillomavirus vaccines: an updated review. Vaccines 8, 391 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Sanjose, S., Brotons, M. & Pavon, M. A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol. 47, 2–13 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ventura, C. et al. The effectiveness of therapeutic vaccines for the treatment of cervical intraepithelial neoplasia 3: a systematic review and meta-analysis. Vaccines 10, 1560 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Page, K. et al. Randomized trial of a vaccine regimen to prevent chronic HCV infection. N. Engl. J. Med. 384, 541–549 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Escalante, G. M., Mutsvunguma, L. Z., Muniraju, M., Rodriguez, E. & Ogembo, J. G. Four decades of prophylactic EBV vaccine research: a systematic review and historical perspective. Front. Immunol. 13, 867918 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, D. et al. Development of a therapeutic vaccine targeting Merkel cell polyomavirus capsid protein VP1 against Merkel cell carcinoma. NPJ Vaccines 6, 119 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janz, A. et al. Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol. 74, 10142–10152 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Lancet Gastroenterology Hepatology. The hunt for a vaccine for hepatitis C virus continues. Lancet Gastroenterol. Hepatol. 6, 253 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dieye, Y., Nguer, C. M., Thiam, F., Diouara, A. A. M. & Fall, C. Recombinant helicobacter pylori vaccine delivery vehicle: a promising tool to treat infections and combat antimicrobial resistance. Antibiotics 11, 1701 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goh, K. L., Chan, W. K., Shiota, S. & Yamaoka, Y. Epidemiology of Helicobacter pylori infection and public health implications. Helicobacter 16, 1–9 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y., Zhu, Y. & Lu, N. H. The management of Helicobacter pylori infection and prevention and control of gastric cancer in China. Front. Cell Infect. Microbiol. 12, 1049279 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stone, J. et al. The potential impact of a hepatitis C vaccine for people who inject drugs: is a vaccine needed in the age of direct-acting antivirals? PLoS One 11, e0156213 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toor, J. et al. Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world. eLife 10, e67635 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, N. et al. The case for a universal hepatitis C vaccine to achieve hepatitis C elimination. BMC Med. 17, 175 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lang, F., Schrörs, B., Löwer, M., Türeci, Ö. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vonka, V. & Hirsch, I. Prophylactic vaccines against cancers of non-infectious origin: a dream or a real possibility? Cent. Eur. J. Public Health 29, 247–258 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chial, H. Proto-oncogenes to oncogenes to cancer. Nat. Educ. 1, 33 (2008).

    Google Scholar 

  • Naderi-Azad, S. & Sullivan, R. The potential of BRAF-targeted therapy combined with immunotherapy in melanoma. Expert Rev. Anticancer Ther. 20, 131–136 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gjertsen, M. K. et al. Ex vivo ras peptide vaccination in patients with advanced pancreatic cancer: results of a phase I/II study. Int. J. Cancer 65, 450–453 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toubaji, A. et al. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother. 57, 1413–1420 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, J. et al. Immunoprevention of KRAS-driven lung adenocarcinoma by a multipeptide vaccine. Oncotarget 8, 82689–82699 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, J. et al. Potentiation of Kras peptide cancer vaccine by avasimibe, a cholesterol modulator. EBioMedicine 49, 72–81 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saeterdal, I. et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc. Natl Acad. Sci. USA 98, 13255–13260 (2001). This article describes the identification of frameshift mutation-derived peptides as tumour-specific antigens in both inherited and spontaneous CRC, providing a foundation for the development of targeted immunotherapies.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gebert, J. et al. Recurrent frameshift neoantigen vaccine elicits protective immunity with reduced tumor burden and improved overall survival in a Lynch syndrome mouse model. Gastroenterology 161, 1288–1302.e13 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J., Shen, L. & Johnston, S. A. Using frameshift peptide arrays for cancer neo-antigens screening. Sci. Rep. 8, 17366 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsnelson, A. Preventive cancer vaccine based on neoantigens gets put to the test. ACS Cent. Sci. 7, 1288–1291 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Appin, C. L. et al. Whole tumor analysis reveals early origin of the TERT promoter mutation and intercellular heterogeneity in TERT expression. Neuro-Oncology 26, 640–652 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stevers, N. O. & Costello, J. F. Telomeres in glioma: maintenance mechanisms to therapeutic potential. Neuro-Oncology 26, 1025–1026 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317, 2402–2416 (2017). This article provides an important analysis of the risks of breast, ovarian and contralateral breast cancer in BRCA1 and BRCA2 mutation carriers, providing valuable data for risk assessment and personalized management strategies for individuals with these mutations.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Skolnik, J. P858 An open-label, multi-center trial of INO-5401 and INO-9012 delivered by electroporation (EP) in combination with cemiplimab in subjects with newly-diagnosed glioblastoma (GBM). J. Immunother. Cancer 8, (2020).

  • Tuohy, V. K., Johnson, J. M. & Mazumder, S. Primary immunoprevention of adult onset cancers by vaccinating against retired tissue-specific self-proteins. Semin. Immunol. 47, 101392 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tuohy, V. K. et al. Targeted vaccination against human alpha-lactalbumin for immunotherapy and primary immunoprevention of triple negative breast cancer. Cancers 8, 56 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaini, R. et al. An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat. Med. 16, 799–803 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serrano, D., Lazzeroni, M. & Bonanni, B. Cancer chemoprevention: much has been done, but there is still much to do. State of the art and possible new approaches. Mol. Oncol. 9, 1008–1017 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Vlad, A. M., Kettel, J. C., Alajez, N. M., Carlos, C. A. & Finn, O. J. MUC1 immunobiology: from discovery to clinical applications. Adv. Immunol. 82, 249–293 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ho, S. B., Ewing, S. L., Montgomery, C. K. & Kim, Y. S. Altered mucin core peptide immunoreactivity in the colon polyp-carcinoma sequence. Oncol. Res. 8, 53–61 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Kimura, T. et al. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev. Res. 6, 18–26 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lohmueller, J. J. et al. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential. Sci. Rep. 6, 31740 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoen, R. E. et al. Randomized, double-blind, placebo-controlled trial of MUC1 peptide vaccine for prevention of recurrent colorectal adenoma. Clin. Cancer Res. 29, 1678–1688 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramanathan, R. K. et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother. 54, 254–264 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goydos, J. S., Elder, E., Whiteside, T. L., Finn, O. J. & Lotze, M. T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. 63, 298–304 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, T., Cen, Q. & Lei, H. A review on development of MUC1-based cancer vaccine. Biomed. Pharmacother. 132, 110888 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheever, M. A. et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tovey, S. M. et al. Poor survival outcomes in HER2-positive breast cancer patients with low-grade, node-negative tumours. Br. J. Cancer 100, 680–683 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Godoy-Ortiz, A. et al. Deciphering HER2 breast cancer disease: biological and clinical implications. Front. Oncol. 9, 1124 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harada, S. et al. The significance of HER-2/neu receptor positivity and immunophenotype in ductal carcinoma in situ with early invasive disease. J. Surg. Oncol. 104, 458–465 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowenfeld, L. et al. Dendritic cell vaccination enhances immune responses and induces regression of HER2(pos) DCIS independent of route: results of randomized selection design trial. Clin. Cancer Res. 23, 2961–2971 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallus, M., Kwok, D., Lakshmanachetty, S., Yamamichi, A. & Okada, H. Immunotherapy approaches in isocitrate-dehydrogenase-mutant low-grade glioma. Cancers 15, 3726 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okada, H. et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin. Cancer Res. 21, 286–294 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ogino, H. et al. Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas. J. Clin. Invest. 132, e151239 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutoit, V. et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135, 1042–1054 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Dutoit, V. et al. Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology 7, e1391972 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Saijo, A. et al. A combinatory vaccine with IMA950 plus varlilumab promotes effector memory T-cell differentiation in the peripheral blood of patients with low-grade gliomas. Neuro-Oncology 26, 335–347 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lonial, S., Rajkumar, S. V. & Mateos, M. V. Risk stratified management approaches for smouldering multiple myeloma: clinical research becomes clinical practice. Lancet Haematol. 9, E162–E165 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lonial, S. et al. Randomized trial of lenalidomide versus observation in smoldering multiple myeloma. J. Clin. Oncol. 38, 1126–1137 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mateos, M. V. et al. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): long-term follow-up of a randomised, controlled, phase 3 trial. Lancet Oncol. 17, 1127–1136 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mateos, M. V. et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N. Engl. J. Med. 369, 438–447 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cherry, B. M. et al. Modeling progression risk for smoldering multiple myeloma: results from a prospective clinical study. Leuk. Lymphoma 54, 2215–2218 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaxman, I. & Gertz, M. A. How I approach smoldering multiple myeloma. Blood 140, 828–838 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buonaguro, L. & Tagliamonte, M. Peptide-based vaccine for cancer therapies. Front. Immunol. 14, 1210044 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023). This article demonstrated the potential of personalized vaccines for targeting tumours in this difficult-to-treat cancer type.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. & Yuan, F. A comprehensive comparison of DNA and RNA vaccines. Adv. Drug Deliv. Rev. 210, 115340 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sayour, E. J., Boczkowski, D., Mitchell, D. A. & Nair, S. K. Cancer mRNA vaccines: clinical advances and future opportunities. Nat. Rev. Clin. Oncol. 21, 489–500 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Duan, Z. et al. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit. Rev. Oncol. Hematol. 193, 104198 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Liu, D. Q., Che, X. Y., Wang, X. X., Ma, C. Y. & Wu, G. Z. Tumor vaccines: unleashing the power of the immune system to fight cancer. Pharmaceuticals 16, 1384 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Keersmaecker, B. et al. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J. Immunother. Cancer 8, (2020).

  • Jansen, Y. et al. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol. Immunother. 69, 2589–2598 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butterfield, L. H. et al. Multiple antigen-engineered DC vaccines with or without IFNalpha to promote antitumor immunity in melanoma. J. Immunother. Cancer 7, 113 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagai, K. et al. Dendritic cell-based immunotherapy pulsed with Wilms tumor 1 peptide and mucin 1 as an adjuvant therapy for pancreatic ductal adenocarcinoma after curative resection: a phase I/IIa clinical trial. Anticancer. Res. 40, 5765–5776 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med 10, eaao5931 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Yu, Y. J. et al. Preliminary clinical study of personalized neoantigen vaccine therapy for microsatellite stability (MSS)-advanced colorectal cancer. Cancer Immunol. Immunother. 72, 2045–2056 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Awad, M. M. et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell 40, 1010–1026.e11 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bezu, L. et al. Trial watch: peptide-based vaccines in anticancer therapy. Oncoimmunology 7, e1511506 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sellars, M. C., Wu, C. J. & Fritsch, E. F. Cancer vaccines: building a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug Discov. 19, 635–652 (2020). This review highlights the effectiveness of using vaccination in a prime-and-boost approach integrating it in the standard of care.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nava, S., Lisini, D., Frigerio, S. & Bersano, A. Dendritic cells and cancer immunotherapy: the adjuvant effect. Int. J. Mol. Sci. 22, 12339 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, R. et al. Mechanisms of cancer resistance to immunotherapy. Front. Oncol. 10, 1290 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Figlin, R. A. et al. Results of the ADAPT phase 3 study of rocapuldencel-t in combination with sunitinib as first-line therapy in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 26, 2327–2336 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vogelzang, N. J. et al. Efficacy and safety of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: the VIABLE phase 3 randomized clinical trial. JAMA Oncol. 8, 546–552 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terasaki, M. et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen-A24 with recurrent or progressive glioblastoma multiforme. J. Clin. Oncol. 29, 337–344 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reardon, D. A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol. 6, 1003–1010 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lim, M. et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro-Oncology 24, 1935–1949 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bausart, M., Préat, V. & Malfanti, A. Immunotherapy for glioblastoma: the promise of combination strategies. J. Exp. Clin. Cancer Res. 41, (2022).

  • Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nanni, P. et al. Antimetastatic activity of a preventive cancer vaccine. Cancer Res. 67, 11037–11044 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Czerniecki, B. J. et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 67, 1842–1852 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koski, G. K. et al. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J. Immunother. 35, 54–65 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A. et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 118, 4354–4362 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fracol, M. et al. Response to HER-2 pulsed DC1 vaccines is predicted by both HER-2 and estrogen receptor expression in DCIS. Ann. Surg. Oncol. 20, 3233–3239 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Nooka, A. K. et al. Assessment of safety and immunogenicity of PVX-410 vaccine with or without lenalidomide in patients with smoldering multiple myeloma: a nonrandomized clinical trial. JAMA Oncol. 4, e183267 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritvo, P. et al. Vaccines in the public eye. Nat. Med. 11, S20–S24 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maeng, H. M. & Berzofsky, J. A. Strategies for developing and optimizing cancer vaccines. F1000Res 8, (2019).

  • Stanton, S. E., Castle, P. E., Finn, O. J., Sei, S. & Emens, L. A. Advances and challenges in cancer immunoprevention and immune interception. J. Immunother. Cancer 12, e007815 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280.e26 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strand, S. H. et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell 40, 1521–1536.e7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fox, B. A. et al. Cancer’s dark matter: lighting the abyss unveils universe of new therapies. Clin. Cancer Res. 29, 2173–2175 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwok, D. W. et al. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. Preprint at bioRxiv (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chong, C. et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lozano-Rabella, M. et al. Exploring the immunogenicity of non-canonical HLA-I tumor ligands identified through proteogenomics. Clin. Cancer Res. 29, 2250–2265 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiffelle, J. & Harari, A. Personalized cancer T-cell therapy takes the stage, mirroring vaccine success. J. Exp. Med. 221, e20240854 (2024). This article highlights the growing success of personalized T cell therapies in cancer treatment, drawing parallels to the advances made with cancer vaccines and emphasizing the potential for tailored immunotherapies to revolutionize cancer care.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petremand, R. et al. Identification of clinically relevant T cell receptors for personalized T cell therapy using combinatorial algorithms. Nat. Biotechnol. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Cohly, H. H., Morrison, D. R. & Atassi, M. Z. Antigen presentation by non-immune B-cell hybridoma clones: presentation of synthetic antigenic sites reveals clones that exhibit no specificity and clones that present only one epitope. Immunol. Invest. 18, 987–992 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schirmer, D. et al. Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity. Oncoimmunology 5, e1175795 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kula, T. et al. T-scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028.e3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G. et al. T cell antigen discovery via trogocytosis. Nat. Methods 16, 183–190 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maruvka, Y. E. et al. Analysis of somatic microsatellite indels identifies driver events in human tumors. Nat. Biotechnol. 35, 951–959 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haasl, R. J. & Payseur, B. A. Remarkable selective constraints on exonic dinucleotide repeats. Evolution 68, 2737–2744 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garbe, Y., Maletzki, C. & Linnebacher, M. An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes. PLoS One 6, e26517 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roudko, V. et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell 183, 1634–1649.e17 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saeterdal, I., Gjertsen, M. K., Straten, P., Eriksen, J. A. & Gaudernack, G. A TGF betaRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8+ T cells. Cancer Immunol. Immunother. 50, 469–476 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonneville, R. et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, (2017).

  • Chapman, A. M., Sun, K. Y., Ruestow, P., Cowan, D. M. & Madl, A. K. Lung cancer mutation profile of EGFR, ALK, and KRAS: meta-analysis and comparison of never and ever smokers. Lung Cancer 102, 122–134 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Smolle, E. & Pichler, M. Non-smoking-associated lung cancer: a distinct entity in terms of tumor biology, patient characteristics and impact of hereditary cancer predisposition. Cancers 11, 204 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kusnierczyk, P. Genetic differences between smokers and never-smokers with lung cancer. Front. Immunol. 14, 1063716 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Alencar, V. T. L., Figueiredo, A. B., Corassa, M., Gollob, K. J. & Cordeiro de Lima, V. C. Lung cancer in never smokers: tumor immunology and challenges for immunotherapy. Front. Immunol. 13, 984349 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazieres, J. et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 31, 1997–2003 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, D. W. et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115, 1723–1733 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fasanelli, F. et al. Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nat. Commun. 6, 10192 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, J. et al. Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes. Nat. Commun. 15, 4031 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tay, G. K. et al. HLA class I associations with the severity of COVID-19 disease in the United Arab Emirates. PLoS One 18, e0285712 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filip, I. et al. Pervasiveness of HLA allele-specific expression loss across tumor types. Genome Med. 15, 8 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crews, D. W., Dombroski, J. A. & King, M. R. Prophylactic cancer vaccines engineered to elicit specific adaptive immune response. Front. Oncol. 11, 626463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhardwaj, P., Bhatia, E., Sharma, S., Ahamad, N. & Banerjee, R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater. 108, 1–21 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorentzen, C. L., Haanen, J. B., Met, O. & Svane, I. M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23, e450–e458 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pulendran, B., P, S. A. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lollini, P. L., Cavallo, F., Nanni, P. & Forni, G. Vaccines for tumour prevention. Nat. Rev. Cancer 6, 204–216 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cory, L. et al. Effects of educational interventions on human papillomavirus vaccine acceptability: a randomized controlled trial. Obstet. Gynecol. 134, 376–384 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brewer, N. T. et al. Announcements versus conversations to improve HPV vaccination coverage: a randomized trial. Pediatrics 139, (2017).

  • Thanasa, E. et al. Awareness regarding human papilloma virus among health professionals and will to accept vaccination: a systematic review. Cureus 14, e30855 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spadaro, M. et al. Cure of mammary carcinomas in Her-2 transgenic mice through sequential stimulation of innate (neoadjuvant interleukin-12) and adaptive (DNA vaccine electroporation) immunity. Clin. Cancer Res. 11, 1941–1952 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, X., McCarrick, J., Jewett, L. & Knowles, B. B. Timely immunization subverts the development of peripheral nonresponsiveness and suppresses tumor development in simian virus 40 tumor antigen-transgenic mice. Proc. Natl Acad. Sci. USA 91, 3916–3920 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spadaro, M., Lanzardo, S., Curcio, C., Forni, G. & Cavallo, F. Immunological inhibition of carcinogenesis. Cancer Immunol. Immunother. 53, 204–216 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greiner, J. W., Zeytin, H., Anver, M. R. & Schlom, J. Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Res. 62, 6944–6951 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Lesterhuis, W. J. et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer. Res. 30, 5091–5097 (2010).

    PubMed 

    Google Scholar 

  • Suzuki, H., Graziano, D. F., McKolanis, J. & Finn, O. J. T cell-dependent antibody responses against aberrantly expressed cyclin B1 protein in patients with cancer and premalignant disease. Clin. Cancer Res. 11, 1521–1526 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Broussard, E. K. et al. Identification of putative immunologic targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions. Cancer Prev. Res. 6, 666–674 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cappello, P. et al. Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer. Gastroenterology 144, 1098–1106 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mennuni, C. et al. Preventive vaccination with telomerase controls tumor growth in genetically engineered and carcinogen-induced mouse models of cancer. Cancer Res. 68, 9865–9874 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corulli, L. R. et al. Multi-epitope-based vaccines for colon cancer treatment and prevention. Front. Immunol. 12, 729809 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. T., Panarelli, N. C., Piotti, K. C. & Yantiss, R. K. Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions. Cancer Immunol. Res. 2, 480–486 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merz, V. et al. Targeting KRAS: the elephant in the room of epithelial cancers. Front. Oncol. 11, 638360 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasti, T. H. et al. Immunoprevention of chemical carcinogenesis through early recognition of oncogene mutations. J. Immunol. 194, 2683–2695 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holmstrom, M. O. & Andersen, M. H. Healthy donors harbor memory t cell responses to RAS neo-antigens. Cancers 12, 3045 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roudko, V. et al. Lynch syndrome and MSI-H cancers: from mechanisms to “off-the-shelf” cancer vaccines. Front. Immunol. 12, 757804 (2021). This article explores the mechanisms behind Lynch syndrome and MSI-H cancers, paving the way for the development of ‘off-the-shelf’ cancer vaccines tailored to these genetically defined cancers.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernandez-Sanchez, A. et al. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J. Immunother. Cancer 10, e004416 (2022). This article emphasizes the potential of vaccines for the immunoprevention of cancers caused by DNA MMR deficiencies, highlighting advances in targeted vaccine strategies for patient populations at high risk.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazumder, S. et al. Primary immunoprevention of epithelial ovarian carcinoma by vaccination against the extracellular domain of anti-mullerian hormone receptor II. Cancer Prev. Res. 10, 612–624 (2017). This article highlights the pioneering work in developing a vaccine targeting the extracellular domain of anti-Mullerian hormone receptor II, aiming to prevent epithelial ovarian carcinoma through primary immunoprevention.

    Article 
    CAS 

    Google Scholar 

  • Iinuma, T. et al. Prevention of gastrointestinal tumors based on adenomatous polyposis coli gene mutation by dendritic cell vaccine. J. Clin. Invest. 113, 1307–1317 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bautz, D. J., Sherpa, A. T. & Threadgill, D. W. Prophylactic vaccination targeting ERBB3 decreases polyp burden in a mouse model of human colorectal cancer. Oncoimmunology 6, e1255395 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hance, K. W., Zeytin, H. E. & Greiner, J. W. Mouse models expressing human carcinoembryonic antigen (CEA) as a transgene: evaluation of CEA-based cancer vaccines. Mutat. Res. 576, 132–154 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensel, J. A., Khattar, V., Ashton, R. & Ponnazhagan, S. Recombinant AAV-CEA tumor vaccine in combination with an immune adjuvant breaks tolerance and provides protective immunity. Mol. Ther. Oncolytics 12, 41–48 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ojima, T. et al. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int. J. Cancer 120, 585–593 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hurwitz, A. A. et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 60, 2444–2448 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Degl’Innocenti, E. et al. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur. J. Immunol. 35, 66–75 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Gray, A. et al. Prostate cancer immunotherapy yields superior long-term survival in TRAMP mice when administered at an early stage of carcinogenesis prior to the establishment of tumor-associated immunosuppression at later stages. Vaccine 27, G52–G59 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boggio, K. et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 188, 589–596 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nanni, P. et al. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med. 194, 1195–1205 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakai, Y. et al. Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res. 64, 8022–8028 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Giovanni, C. et al. Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2. Breast Cancer Res. 16, R10 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pupa, S. M. et al. Inhibition of mammary carcinoma development in HER-2/neu transgenic mice through induction of autoimmunity by xenogeneic DNA vaccination. Cancer Res. 65, 1071–1078 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, J. et al. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J. Immunol. 170, 1980–1986 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steitz, J. et al. Evaluation of genetic melanoma vaccines in cdk4-mutant mice provides evidence for immunological tolerance against authochthonous melanomas in the skin. Int. J. Cancer 118, 373–380 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tormo, D. et al. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res. 66, 5427–5435 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beatty, P. L., Narayanan, S., Gariepy, J., Ranganathan, S. & Finn, O. J. Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prev. Res. 3, 438–446 (2010).

    Article 
    CAS 

    Google Scholar 

  • Hochnadel, I. et al. Safety and efficacy of prophylactic and therapeutic vaccine based on live-attenuated Listeria monocytogenes in hepatobiliary cancers. Oncogene 41, 2039–2053 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogt, A. et al. Immunoprevention of basal cell carcinomas with recombinant hedgehog-interacting protein. J. Exp. Med. 199, 753–761 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Otahal, P., Schell, T. D., Hutchinson, S. C., Knowles, B. B. & Tevethia, S. S. Early immunization induces persistent tumor-infiltrating CD8+ T cells against an immunodominant epitope and promotes lifelong control of pancreatic tumor progression in SV40 tumor antigen transgenic mice. J. Immunol. 177, 3089–3099 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, B. A., Yarchoan, M. & Jaffee, E. M. Prophylactic vaccines for nonviral cancers. Annu. Rev. Cancer Biol. 2, 195–211 (2018).

    Article 

    Google Scholar 

  • Kaur, A., Baldwin, J., Brar, D., Salunke, D. B. & Petrovsky, N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr. Opin. Chem. Biol. 70, 102172 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paston, S. J., Brentville, V. A., Symonds, P. & Durrant, L. G. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 12, 627932 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y., Huang, C. T., Huang, X. & Pardoll, D. M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Del Rosso, J. Q. The use of topical imiquimod for the treatment of actinic keratosis: a status report. Cutis 76, 241–248 (2005).

    PubMed 

    Google Scholar 

  • Del Rosso, J. Q., Kircik, L., Goldenberg, G. & Brian, B. Comprehensive management of actinic keratoses: practical integration of available therapies with a review of a newer treatment approach. J. Clin. Aesthet. Dermatol. 7, S2–S12 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dobson, S. R. et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA 309, 1793–1802 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • World Health Organization. Human papillomavirus vaccines: WHO position paper (2022 update). Wkly Epidemiol. Rec. 50, 645–672 (2022).

    Google Scholar 

  • Bijker, M. S. et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 38, 1033–1042 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *