
Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco R, et al. Pre-eclampsia. Nat Rev Dis Prim. 2023;9:8.
Google Scholar
Mol B, Roberts CT, Thangaratinam S, Magee LA, de Groot C, Hofmeyr GJ. Pre-eclampsia. Lancet. 2016;387:999–1011.
Google Scholar
Sole KB, Staff AC, Räisänen S, Laine K. Substantial decrease in preeclampsia prevalence and risk over two decades: a population-based study of 1,153,227 deliveries in Norway. Pregnancy Hypertens. 2022;28:21–7
Google Scholar
Dzakpasu S, Nelson C, Darling EK, Edwards W, Murphy PA, Scott H, et al. Trends in rate of hypertensive disorders of pregnancy and associated morbidities in Canada: a population-based study (2012-2021). Cmaj. 2024;196:E897–e904.
Google Scholar
Ohkuchi A, Suzuki H, Matsubara K, Watanabe K, Saitou T, Oda H, et al. Exponential increase of the gestational-age-specific incidence of preeclampsia onset (COPE study): a multicenter retrospective cohort study in women with maternal check-ups at <20 weeks of gestation in Japan. Hypertens Res. 2022;45:1679–89.
Google Scholar
Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal preeclampsia and neonatal outcomes. J Pregnancy. 2011;2011:214365.
Google Scholar
Nakamura N, Ushida T, Nakatochi M, Kobayashi Y, Moriyama Y, Imai K, et al. Mortality and neurological outcomes in extremely and very preterm infants born to mothers with hypertensive disorders of pregnancy. Sci Rep. 2021;11:1729.
Google Scholar
Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33:130–7.
Google Scholar
Sakowicz, A, Bralewska M, Rybak-Krzyszkowska M, Grzesiak M, Pietrucha T. New ideas for the prevention and treatment of preeclampsia and their molecular inspirations. Int J Mol Sci. 2023;24:12100.
Wierzejska RE. Dietary supplements-for whom? the current state of knowledge about the health effects of selected supplement use. Int J Environ Res Public Health. 2021;18:8897.
Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD. Dietary supplements and disease prevention — a global overview. Nat Rev Endocrinol. 2016;12:407–20.
Google Scholar
Brown B, Wright C. Safety and efficacy of supplements in pregnancy. Nutr Rev. 2020;78:813–26.
Google Scholar
Achamrah N, Ditisheim A. Nutritional approach to preeclampsia prevention. Curr Opin Clin Nutr Metab Care. 2018;21:168–73.
Google Scholar
Liu Y, Wang X, Fu W, Cao Y, Dou W, Duan D, et al. The association between dietary mineral intake and the risk of preeclampsia in Chinese pregnant women: a matched case–control study. Sci Rep. 2023;13:16103.
Google Scholar
Kinshella MW, Omar S, Scherbinsky K, Vidler M, Magee LA, von Dadelszen P, et al. Maternal nutritional risk factors for pre-eclampsia incidence: findings from a narrative scoping review. Reprod Health. 2022;19:188.
Google Scholar
Ushida T, Tano S, Imai K, Matsuo S, Kajiyama H, Kotani T. Postpartum and interpregnancy care of women with a history of hypertensive disorders of pregnancy. Hypertension Res. 2024;47:1457–69.
Google Scholar
Tousen Y, Kondo T, Chiba T, Ishimi Y. Regulation of the Food Labelling Systems for Health and Nutrition in Japan and Associated Role of the National Institute of Health and Nutrition. Jpn J Nutr Dietetics. 2020;78:S80–S90.
Google Scholar
Ministry of Health, L.a.W., Dietary Reference Intakes for Japanese (2020). 2020: p. https://www.mhlw.go.jp/content/001151422.pdf.
Nutrition, N.I.o.H.a., The National Health and Nutrition Survey (NHNS) Japan, 2019. 2019: p. https://www.nibiohn.go.jp/eiken/kenkounippon21/download_files/eiyouchousa/2019.pdf.
Matsumoto M, Tajima R, Fujiwara A, Yuan X, Okada E, Takimoto H. Trends in Food Group Intake According to Body Size among Young Japanese Women: The 2001–2019 National Health and Nutrition Survey. Nutrients. 2022;14:4078.
Kubota K, Itoh H, Tasaka M, Naito H, Fukuoka Y, Muramatsu Kato K, et al. Changes of maternal dietary intake, bodyweight and fetal growth throughout pregnancy in pregnant Japanese women. J Obstet Gynaecol Res. 2013;39:1383–90.
Google Scholar
Eshak ES, Okada C, Baba S, Kimura T, Ikehara S, Sato T, et al. Maternal total energy, macronutrient and vitamin intakes during pregnancy associated with the offspring’s birth size in the Japan Environment and Children’s Study. Br J Nutr. 2020;124:558–66.
Google Scholar
Ishitsuka K, Sasaki S, Yamamoto-Hanada K, Mezawa H, Konishi M, Ohya Y, et al. Changes in dietary intake in pregnant women from periconception to pregnancy in the Japan Environment and Children’s Study: A Nationwide Japanese Birth Cohort Study. Matern Child Health J. 2020;24:389–400.
Google Scholar
World Health Organization, Guideline: Sodium Intake for Adults and Children. 2012.
Bastos Maia S, Rolland Souza AS, Costa Caminha MF, Lins da Silva S, Callou Cruz R, Carvalho Dos Santos C, et al. Vitamin A and pregnancy: a narrative review. nutrients. 2019;11:681.
Zhang CX, Ho SC. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr. 2009;18:240–50.
Google Scholar
Liu Y, Ma S, Huang X, Bo Y, Fu W, Cao Y, et al. Dietary intake and serum concentrations of vitamin A and vitamin E and pre-eclampsia risk in Chinese pregnant women: A matched case-control study. Front Nutr. 2023;10:1049055.
Google Scholar
Salam RA, Zuberi NF, Bhutta ZA. Pyridoxine (vitamin B6) supplementation during pregnancy or labour for maternal and neonatal outcomes. Cochrane Database Syst Rev. 2015;2015:CD000179.
Google Scholar
Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020;26:5–13.
Google Scholar
Podolska K, Mazankova D, Goboova M, Vano I. Ascorbic acid intake during pregnancy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2023;167:213–8.
Google Scholar
Rumbold A, Ota E, Nagata C, Shahrook S, Crowther CA. Vitamin C supplementation in pregnancy. Cochrane Database Syst Rev. 2015;2015:Cd004072.
Google Scholar
Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS, ACTS Study G. Vitamins C and E and the risks of preeclampsia and perinatal complications. N. Engl J Med. 2006;354:1796–806.
Google Scholar
Laird E, Ward M, McSorley E, Strain JJ, Wallace J. Vitamin D and bone health: potential mechanisms. Nutrients. 2010;2:693–724.
Google Scholar
Wang R, Xu F, Xia X, Xiong A, Dai D, Ling Y, et al. The effect of vitamin D supplementation on primary depression: a meta-analysis. J Affect Disord. 2024;344:653–61.
Google Scholar
Mazidi M, Karimi E, Rezaie P, Vatanparast H. The impact of vitamin D supplement intake on vascular endothelial function; a systematic review and meta-analysis of randomized controlled trials. Food Nutr Res. 2017;61:1273574.
Google Scholar
Nema J, Sundrani D, Joshi S. Role of vitamin D in influencing angiogenesis in preeclampsia. Hypertens Pregnancy. 2019;38:201–7.
Google Scholar
Nema J, Sundrani D, Joshi S. Prenatal vitamin D supplementation reduces blood pressure and improves placental angiogenesis in an animal model of preeclampsia. Food Funct. 2020;11:10413–22.
Google Scholar
Nassar SZ, Badae NM. Protective effect of vitamin D supplementation in a rat modal of preeclampsia: a possible implication of chemerin. Hypertens Pregnancy. 2019;38:149–56.
Google Scholar
Ma Y, Yang Y, Lv M, Zhang Y, He Q, Zhang Y, et al. 1,25(OH)2D3 alleviates LPS-induced preeclampsia-like rats impairment in the protective effect by TLR4/NF-kB pathway. Placenta. 2022;130:34–41.
Google Scholar
Bi WG, Nuyt AM, Weiler H, Leduc L, Santamaria C, Wei SQ. Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: a systematic review and meta-analysis. JAMA Pediatr. 2018;172:635–45.
Google Scholar
Palacios C, Trak-Fellermeier MA, Martinez RX, Lopez-Perez L, Lips P, Salisi JA, et al. Regimens of vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;10:Cd013446.
Google Scholar
Fogacci S, Fogacci F, Banach M, Michos ED, Hernandez AV, Lip G, et al. Vitamin D supplementation and incident preeclampsia: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr. 2020;39:1742–52.
Google Scholar
Irwinda R, Hiksas R, Lokeswara AW, Wibowo N. Vitamin D supplementation higher than 2000 IU/day compared to lower dose on maternal-fetal outcome: Systematic review and meta-analysis. Women’s Health (Lond). 2022;18:17455057221111066.
Google Scholar
Palacios C, Kostiuk LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;7:Cd008873.
Google Scholar
Liu YH, Zhang YS, Chen JY, Wang ZJ, Liu YX, Li JQ, et al. Comparative effectiveness of prophylactic strategies for preeclampsia: a network meta-analysis of randomized controlled trials. Am J Obstet Gynecol. 2023;228:535–46.
Google Scholar
Pérez-López FR, Pasupuleti V, Mezones-Holguin E, Benites-Zapata VA, Thota P, Deshpande A, et al. Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2015;103:1278–88.e4.
Google Scholar
Khaing W, Vallibhakara SA, Tantrakul V, Vallibhakara O, Rattanasiri S, McEvoy M, et al. Calcium and Vitamin D supplementation for prevention of preeclampsia: a systematic review and network meta-analysis. Nutrients. 2017;9:1141.
Palacios C, Kostiuk LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2024;7:Cd008873.
Google Scholar
Anderson Berry AL, Hanson CK. The Role of Vitamin E in Pregnancy, in Vitamin E in Human Health, P. Weber, et al., Editors. 2019, Springer International Publishing: Cham. p. 405-417.
Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ Med J. 2014;14:e157–65.
Google Scholar
Rumbold A, Ota E, Hori H, Miyazaki C, Crowther CA. Vitamin E supplementation in pregnancy. Cochrane Database Syst Rev. 2015;2015:Cd004069.
Google Scholar
Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH, Vitamins in Pre-eclampsia (VIP) Trial C. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet. 2006;367:1145–54.
Google Scholar
Villar J, Purwar M, Merialdi M, Zavaleta N, Thi Nhu Ngoc N, Anthony J, et al. World Health Organisation multicentre randomised trial of supplementation with vitamins C and E among pregnant women at high risk for pre-eclampsia in populations of low nutritional status from developing countries. BJOG. 2009;116:780–8.
Google Scholar
Conde-Agudelo A, Romero R, Kusanovic JP, Hassan SS. Supplementation with vitamins C and E during pregnancy for the prevention of preeclampsia and other adverse maternal and perinatal outcomes: a systematic review and metaanalysis. Am J Obstet Gynecol. 2011;204:503.e1–12.
Google Scholar
Caudill MA. Folate bioavailability: implications for establishing dietary recommendations and optimizing status. Am J Clin Nutr. 2010;91:1455s–1460s.
Google Scholar
Greenberg JA, Bell SJ, Guan Y, Yu YH. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol. 2011;4:52–9.
Google Scholar
Di Simone N, Riccardi P, Maggiano N, Piacentani A, D’Asta M, Capelli A, et al. Effect of folic acid on homocysteine-induced trophoblast apoptosis. Mol Hum Reprod. 2004;10:665–9.
Google Scholar
Liu C, Liu C, Wang Q, Zhang Z. Supplementation of folic acid in pregnancy and the risk of preeclampsia and gestational hypertension: a meta-analysis. Arch Gynecol Obstet. 2018;298:697–704.
Google Scholar
Cui H, Zhang N, An J, Zeng X, Zhao Y, Sun X, et al. Maternal folic acid supplementation to prevent preeclampsia: a systematic review and meta-analysis. Complementary Ther Med. 2024;82:103052.
Google Scholar
Christiansen CH, Høgh S, Rode L, Schroll JB, Hegaard HK, Wolf HT. Multivitamin use and risk of preeclampsia: A systematic review and meta-analysis. Acta Obstetricia et Gynecologica Scandinavica. 2022;101:1038–47.
Google Scholar
Azami M, Azadi T, Farhang S, Rahmati S, Pourtaghi K. The effects of multi mineral-vitamin D and vitamins (C+E) supplementation in the prevention of preeclampsia: An RCT. Int J Reprod Biomed. 2017;15:273–8.
Google Scholar
Rumiris D, Purwosunu Y, Wibowo N, Farina A, Sekizawa A. Lower rate of preeclampsia after antioxidant supplementation in pregnant women with low antioxidant status. Hypertens Pregnancy. 2006;25:241–53.
Google Scholar
Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ. 2003;27:201–6.
Google Scholar
Cormick G, Belizán JM. Calcium intake and health. Nutrients. 2019;11:1606.
DeSousa J, Tong M, Wei J, Chamley L, Stone P, Chen Q. The anti-inflammatory effect of calcium for preventing endothelial cell activation in preeclampsia. J Hum Hypertens. 2016;30:303–8.
Google Scholar
de Brito Pitilin E, Marafon F, da Silva Rosa Bonadiman B, Pelazza BB, Pillat MM, de Lara JD, et al. Effects of calcium supplementation on changes in the IL2, IL4, IL6, IL10 axes and oxidative stress in pregnant women at risk for pre-eclampsia. BMC Pregnancy Childbirth. 2024;24:71.
Google Scholar
Carroli G, Merialdi M, Wojdyla D, Abalos E, Campodonico L, Yao SE, et al. Effects of calcium supplementation on uteroplacental and fetoplacental blood flow in low-calcium-intake mothers: a randomized controlled trial. Am J Obstet Gynecol. 2010;202:45.e1–45.e9.
Google Scholar
World Health Organization, WHO recommendations for Prevention and treatment of pre-eclampsia and eclampsia, 2011.
Woo Kinshella ML, Sarr C, Sandhu A, Bone JN, Vidler M, Moore SE, et al. Calcium for pre-eclampsia prevention: A systematic review and network meta-analysis to guide personalised antenatal care. Bjog. 2022;129:1833–43.
Google Scholar
Ito M, Koyama H, Ohshige A, Maeda T, Yoshimura T, Okamura H. Prevention of preeclampsia with calcium supplementation and vitamin D3 in an antenatal protocol. Int J Gynaecol Obstet. 1994;47:115–20.
Google Scholar
Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33.
Google Scholar
Cormick G, Betrán AP, Romero IB, Lombardo CF, Gülmezoglu AM, Ciapponi A, et al. Global inequities in dietary calcium intake during pregnancy: a systematic review and meta-analysis. BJOG. 2019;126:444–56.
Google Scholar
Balk EM, Adam GP, Langberg VN, Earley A, Clark P, Ebeling PR, et al. Global dietary calcium intake among adults: a systematic review. Osteoporos Int. 2017;28:3315–24.
Google Scholar
Dwarkanath P, Muhihi A, Sudfeld CR, Wylie BJ, Wang M, Perumal N, et al. Two randomized trials of low-dose calcium supplementation in pregnancy. N. Engl J Med. 2024;390:143–53.
Google Scholar
Huo X, Clarke R, Halsey J, Jackson R, Lehman A, Prince R, et al. Calcium supplements and risk of CVD: a meta-analysis of randomized trials. Curr Dev Nutr. 2023;7:100046.
Google Scholar
Myung SK, Kim HB, Lee YJ, Choi YJ, Oh SW. Calcium supplements and risk of cardiovascular disease: a meta-analysis of clinical trials. Nutrients. 2021;13:368.
Gomes F, Ashorn P, Askari S, Belizan JM, Boy E, Cormick G, et al. Calcium supplementation for the prevention of hypertensive disorders of pregnancy: current evidence and programmatic considerations. Ann N. Y Acad Sci. 2022;1510:52–67.
Google Scholar
World Health Organization, WHO recommendation on Calcium supplementation before pregnancy for the prevention of pre-eclampsia and its complications. 2020.
Omotayo MO, Dickin KL, O’Brien KO, Neufeld LM, De Regil LM, Stoltzfus RJ. Calcium supplementation to prevent preeclampsia: translating guidelines into practice in low-income countries. Adv Nutr. 2016;7:275–8.
Google Scholar
de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95:1–46.
Google Scholar
Dalton LM, Ní Fhloinn DM, Gaydadzhieva GT, Mazurkiewicz OM, Leeson H, Wright CP. Magnesium in pregnancy. Nutr Rev. 2016;74:549–57.
Google Scholar
Yuan J, Yu Y, Zhu T, Lin X, Jing X, Zhang J. Oral magnesium supplementation for the prevention of preeclampsia: a meta-analysis or randomized controlled trials. Biol Trace Elem Res. 2022;200:3572–81.
Google Scholar
Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI J. 2023;22:809–27.
Google Scholar
Jin S, Hu C, Zheng Y. Maternal serum zinc level is associated with risk of preeclampsia: a systematic review and meta-analysis. Front Public Health. 2022;10:968045.
Google Scholar
Tesfa E, Nibret E, Munshea A. Maternal serum zinc level and pre-eclampsia risk in African women: a systematic review and meta-analysis. Biol Trace Elem Res. 2021;199:4564–71.
Google Scholar
Iqbal S, Ali I. Effect of maternal zinc supplementation or zinc status on pregnancy complications and perinatal outcomes: an umbrella review of meta-analyses. Heliyon. 2021;7:e07540.
Google Scholar
Carducci B, Keats EC, Bhutta ZA. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev. 2021;3:Cd000230.
Google Scholar
Fisher AL, Nemeth E. Iron homeostasis during pregnancy†‡. Am J Clin Nutr. 2017;106:1567S–1574S.
Google Scholar
Peña-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015:Cd004736.
Google Scholar
Fitriana F, Pallotti P. Iron supplementation for non-anaemic pregnant women and the incidence of hypertensive disorders in pregnancy: a systematic review and meta-analysis. Asian Pac J Reprod. 2022;11:165–74.
Google Scholar
Hansen R, Sejer E, Holm C, Schroll JB. Iron supplements in pregnant women with normal iron status: A systematic review and meta-analysis. Acta Obst et Gynecol Scand. 2023;102:1147–58.
Google Scholar
Detlefs SE, Jochum MD, Salmanian B, McKinney JR, Aagaard KM. The impact of response to iron therapy on maternal and neonatal outcomes among pregnant women with anemia. Am J Obstet Gynecol MFM. 2022;4:100569.
Google Scholar
Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664–6.
Google Scholar
Weckman AM, McDonald CR, Baxter JB, Fawzi WW, Conroy AL, Kain KC. Perspective: L-arginine and L-citrulline supplementation in pregnancy: a potential strategy to improve birth outcomes in low-resource settings. Adv Nutr. 2019;10:765–77.
Google Scholar
Meher S, Duley L. Nitric oxide for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007;2007:Cd006490.
Google Scholar
Sagadevan S, Sri Hari O, Sirajudeen MJ, Ramalingam G, Basutkar RS. Effects of L-arginine on preeclampsia risks and maternal and neonatal outcomes: a systematic review and meta-analysis. Asian Pac J Reprod. 2021;10:241–51.
Google Scholar
Menichini D, Feliciello L, Neri I, Facchinetti F. L-Arginine supplementation in pregnancy: a systematic review of maternal and fetal outcomes. J Matern Fetal Neonatal Med. 2023;36:2217465.
Google Scholar
Virmani MA, Cirulli M. The role of l-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. Int J Mol Sci. 2022;23:2717.
Google Scholar
Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of carnitine and fatty acids during pregnancy, lactation and perinatal period. Nutritional support in specific groups of pregnant women. Clin Nutr. 2020;39:2337–46.
Google Scholar
Thiele IG, Niezen-Koning KE, van Gennip AH, Aarnoudse JG. Increased plasma carnitine concentrations in preeclampsia. Obstet Gynecol. 2004;103:876–80.
Google Scholar
Sato E, Tsunokuni Y, Kaneko M, Saigusa D, Saito R, Shimma S, et al. Metabolomics of a mouse model of preeclampsia induced by overexpressing soluble fms-like tyrosine kinase 1. Biochemical Biophysical Res Commun. 2020;527:1064–71.
Google Scholar
Imran M, Ghorat F, Ul-Haq I, Ur-Rehman H, Aslam F, Heydari M, et al. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants (Basel). 2020;9:706.
Sun S, Cao C, Li J, Meng Q, Cheng B, Shi B, et al. Lycopene modulates placental health and fetal development under high-fat diet during pregnancy of rats. Mol Nutr Food Res. 2021;65:e2001148.
Google Scholar
Sun S, Meng Q, Bai Y, Cao C, Li J, Cheng B, et al. Lycopene improves maternal reproductive performance by modulating milk composition and placental antioxidative and immune status. Food Funct. 2021;12:12448–67. https://doi.org/10.1039/d1fo01595h.
Google Scholar
Sharma JB, Kumar A, Kumar A, Malhotra M, Arora R, Prasad S, et al. Effect of lycopene on pre-eclampsia and intra-uterine growth retardation in primigravidas. Int J Gynecol Obstet. 2003;81:257–62.
Google Scholar
Banerjee S, Jeyaseelan S, Guleria R. Trial of lycopene to prevent pre-eclampsia in healthy primigravidas: results show some adverse effects. J Obstet Gynaecol Res. 2009;35:477–82.
Google Scholar
Gligorijević N, Stanić-Vučinić D, Radomirović M, Stojadinović M, Khulal U, Nedić O, et al. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to COVID-19 disease: mode of action and approaches explored to increase its bioavailability. Molecules. 2021;26:2834.
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev. 2024;82:612–21.
Google Scholar
Moraloglu O, Engin-Ustun Y, Tonguç E, Var T, Tapisiz OL, Ergün H, et al. The effect of resveratrol on blood pressure in a rat model of preeclampsia. J Matern Fetal Neonatal Med. 2012;25:845–8.
Google Scholar
Singh CK, Kumar A, Lavoie HA, Dipette DJ, Singh US. Diabetic complications in pregnancy: is resveratrol a solution? Exp Biol Med (Maywood). 2013;238:482–90.
Google Scholar
Ramli I, Posadino AM, Giordo R, Fenu G, Fardoun M, Iratni R, et al. Effect of resveratrol on pregnancy, prenatal complications and pregnancy-associated structure alterations. Antioxidants (Basel), 2023 12.
Ding J, Kang Y, Fan Y, Chen Q. Efficacy of resveratrol to supplement oral nifedipine treatment in pregnancy-induced preeclampsia. Endocr Connect. 2017;6:595–600.
Google Scholar
Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG, The S, et al. The role of astaxanthin on chronic diseases. Crystals. 2021;11:505–369.
Google Scholar
Xuan RR, Niu TT, Chen HM. Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation. Mol Med Rep. 2016;14:2697–704.
Google Scholar
Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH. Omega-3 fatty acids: a comprehensive review of their role in health and disease. Postgrad Med J. 2009;85:84–90.
Google Scholar
Coletta JM, Bell SJ, Roman AS. Omega-3 Fatty acids and pregnancy. Rev Obstet Gynecol. 2010;3:163–71.
Google Scholar
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018;11:Cd003402.
Google Scholar
Bakouei F, Delavar MA, Mashayekh-Amiri S, Esmailzadeh S, Taheri Z. Efficacy of n-3 fatty acids supplementation on the prevention of pregnancy induced-hypertension or preeclampsia: A systematic review and meta-analysis. Taiwan J Obstet Gynecol. 2020;59:8–15.
Google Scholar
Firouzabadi FD, Shab-Bidar S, Jayedi A. The effects of omega-3 polyunsaturated fatty acids supplementation in pregnancy, lactation, and infancy: an umbrella review of meta-analyses of randomized trials. Pharmacol Res. 2022;177:106100.
Google Scholar
Cirilli I, Damiani E, Dludla PV, Hargreaves I, Marcheggiani F, Millichap LE, et al. Role of Coenzyme Q(10) in health and disease: an update on the last 10 years (2010-2020). Antioxid (Basel). 2021;10:1325.
Google Scholar
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. The use of Coenzyme Q10 in cardiovascular diseases. Antioxid (Basel). 2021;10:755.
Google Scholar
Aaseth J, Alexander J, Alehagen U. Coenzyme Q10 supplementation – In ageing and disease. Mech Ageing Dev. 2021;197:111521.
Google Scholar
Teran E, Racines-Orbe M, Vivero S, Escudero C, Molina G, Calle A. Preeclampsia is associated with a decrease in plasma coenzyme Q10 levels. Free Radic Biol Med. 2003;35:1453–6.
Google Scholar
Teran E, Hernandez I, Nieto B, Tavara R, Ocampo JE, Calle A. Coenzyme Q10 supplementation during pregnancy reduces the risk of pre-eclampsia. Int J Gynecol Obstet. 2009;105:43–5.
Google Scholar
Ahmad SB, Ali A, Bilal M, Rashid SM, Wani AB, Bhat RR, et al. Melatonin and health: insights of melatonin action, biological functions, and associated disorders. Cell Mol Neurobiol. 2023;43:2437–58.
Google Scholar
Lee JG, Woo YS, Park SW, Seog DH, Seo MK, Bahk WM. The neuroprotective effects of melatonin: possible role in the pathophysiology of neuropsychiatric disease. Brain Sci. 2019;9:285.
Google Scholar
Simko F, Paulis L. Melatonin as a potential antihypertensive treatment. J Pineal Res. 2007;42:319–22.
Google Scholar
Verteramo R, Pierdomenico M, Greco P, Milano C. The role of melatonin in pregnancy and the health benefits for the newborn. Biomedicines. 2022;10:3252.
Google Scholar
Tang Y, Groom K, Chamley L, Chen Q. Melatonin, a potential therapeutic agent for preeclampsia, reduces the extrusion of toxic extracellular vesicles from preeclamptic placentae. Cells. 2021;10:1904.
Google Scholar
Hannan NJ, Binder NK, Beard S, Nguyen TV, Kaitu’u-Lino TJ, Tong S. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (sFLT) from primary trophoblast but does not rescue endothelial dysfunction: an evaluation of its potential to treat preeclampsia. PLoS One. 2018;13:e0187082.
Google Scholar
Tuli HS, Kumar A, Sak K, Aggarwal D, Gupta DS, Kaur G, et al. Gut microbiota-assisted synthesis, cellular interactions and synergistic perspectives of equol as a potent anticancer isoflavone. Pharmaceuticals. 2022;15:1418.
Google Scholar
Matsumoto T, Kojima M, Takayanagi K, Taguchi K, Kobayashi T. Role of S-Equol, indoxyl sulfate, and trimethylamine N-oxide on vascular function. Am J Hypertens. 2020;33:793–803.
Google Scholar
link