
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
Google Scholar
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Google Scholar
Stevens, C. J. Nitrogen in the environment: excess nitrogen causes problems in developed nations, but nitrogen-poor soils threaten food security elsewhere. Science 363, 578–580 (2019).
Google Scholar
Ren, C. et al. Climate change unequally affects nitrogen use and losses in global croplands. Nat. Food 4, 294–304 (2023).
Google Scholar
Ju, X. T. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).
Google Scholar
Larkin, R. P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 53, 199–221 (2015).
Google Scholar
Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat. Commun. 14, 7318 (2023).
Google Scholar
Bünemann, E. K. et al. Soil quality – a critical review. Soil Boil. Biochem. 120, 105–125 (2018).
Google Scholar
McBratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).
Google Scholar
Dunbabin, V. M. et al. Modelling root–soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 372, 93–124 (2013).
Google Scholar
Moraes, M. T. D. et al. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 200, 104611 (2020).
Google Scholar
Shakoor, A. et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—a global meta-analysis. J. Clean. Prod. 278, 124019 (2021).
Google Scholar
Salim, N. & Raza, A. Nutrient use efficiency (NUE) for sustainable wheat production: a review. J. Plant Nutr. 43, 297–315 (2020).
Google Scholar
Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).
Google Scholar
Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).
Google Scholar
Ren, C. et al. Fertilizer overuse in Chinese smallholders due to lack of fixed inputs. J. Environ. Manag. 293, 112913 (2021).
Google Scholar
Ren, C. et al. Ageing threatens sustainability of smallholder farming in China. Nature 616, 96–103 (2023).
Google Scholar
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).
Google Scholar
van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 6365 (2014).
Google Scholar
Ma, B. et al. Biogeographic patterns and drivers of soil viromes. Nat. Ecol. Evol. 8, 717–728 (2024).
Google Scholar
Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).
Guo, X., Liu, H. & Zhang, J. The role of biochar in organic waste composting and soil improvement: a review. Waste Manag. 102, 884–899 (2020).
Google Scholar
Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).
Google Scholar
Campanhola, C. & Pandey, S. (eds) Sustainable Food and Agriculture (Academic Press, 2019).
Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).
Google Scholar
Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).
Google Scholar
Brink, C. et al. in The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (eds Sutton, M. A. et al.) 513–540 (Cambridge Univ. Press, 2011).
Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M. & Middelburg, J. J. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance. Geosci. Model Dev. 8, 4045–4067 (2015).
Google Scholar
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).
Google Scholar
WorldPop Dataset (WorldPop, 2020); https://www.worldpop.org/
Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022).
Google Scholar
Agnolucci, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).
Google Scholar
Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).
Google Scholar
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Google Scholar
Ma, L. et al. Global rules for translating land-use change (LUH2) to land-cover change for CMIP6 using GLM2. Geosci. Model Dev. 13, 3203–3220 (2020).
Google Scholar
Jiang, T., Su, B. & Wang, Y. National and provincial population and economy projection databases under Shared Socioeconomic Pathways (SSP1–5)_v2. Science Data Bank (2024).
Swart, N. C. et al. Amon_CanESM5 _r1i1p1f1: CMIP6 Monthly Data for Surface Air Temperature and Precipitation (Canadian Centre for Climate Modelling and Analysis, accessed 15 October 2023); https://aims2.llnl.gov/search
Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).
Google Scholar
Zalasiewicz, J., Williams, M., Steffen, W. & Crutzen, P. The new world of the Anthropocene. Environ. Sci. Technol. 44, 2228–2231 (2010).
Google Scholar
Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).
Google Scholar
He, L. & Rosa, L. Solutions to agricultural green water scarcity under climate change. PNAS Nexus 2, pgad117 (2023).
Google Scholar
Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).
Google Scholar
Klimont, Z. & Winiwarter, W. Integrated Ammonia Abatement—Modelling of Emission Control Potentials and Costs in GAINS. IIASA Interim Report IR-11-027 (IIASA, 2011).
Beach, R. H. et al. Global mitigation potential and costs of reducing agricultural non-CO2 greenhouse gas emissions through 2030. J. Integr. Environ. Sci. 12, 87–105 (2015).
Google Scholar
Sobota, D. J. et al. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).
Google Scholar
Giannadaki, D., Giannakis, E., Pozzer, A. & Lelieveld, J. Estimating health and economic benefits of reductions in air pollution from agriculture. Sci. Total Environ. 622–623, 1304–1316 (2018).
Google Scholar
Chen, Q. et al. Research on the evaluation method of the ecosystem services of Earth’s critical zone. J. Nanjing Univ. Nat. Sci. 58, 1070–1086 (2022).
Yue, D., Wang, L., Geng, R., Wang, Q. & Dai, Y. Initial assessment of seaweed farming ecological value in coastal waters of China. J. Agric. Sci. Technol. 16, 126–133 (2014).
Strefler, J. et al. Alternative carbon price trajectories can avoid excessive carbon removal. Nat. Commun. 12, 2264 (2021).
Google Scholar
He, X. et al. A global dataset of soil total phosphorus concentration in (semi-)natural terrestrial ecosystems. figshare (2021).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Tang, F. H. M. et al. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).
link