May 12, 2025
Soil health contributes to variations in crop production and nitrogen use efficiency
  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Stevens, C. J. Nitrogen in the environment: excess nitrogen causes problems in developed nations, but nitrogen-poor soils threaten food security elsewhere. Science 363, 578–580 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ren, C. et al. Climate change unequally affects nitrogen use and losses in global croplands. Nat. Food 4, 294–304 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ju, X. T. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larkin, R. P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 53, 199–221 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat. Commun. 14, 7318 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bünemann, E. K. et al. Soil quality – a critical review. Soil Boil. Biochem. 120, 105–125 (2018).

    Article 

    Google Scholar 

  • McBratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).

    Article 
    ADS 

    Google Scholar 

  • Dunbabin, V. M. et al. Modelling root–soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 372, 93–124 (2013).

    Article 
    CAS 

    Google Scholar 

  • Moraes, M. T. D. et al. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 200, 104611 (2020).

    Article 

    Google Scholar 

  • Shakoor, A. et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—a global meta-analysis. J. Clean. Prod. 278, 124019 (2021).

    Article 
    CAS 

    Google Scholar 

  • Salim, N. & Raza, A. Nutrient use efficiency (NUE) for sustainable wheat production: a review. J. Plant Nutr. 43, 297–315 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, C. et al. Fertilizer overuse in Chinese smallholders due to lack of fixed inputs. J. Environ. Manag. 293, 112913 (2021).

    Article 

    Google Scholar 

  • Ren, C. et al. Ageing threatens sustainability of smallholder farming in China. Nature 616, 96–103 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 6365 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, B. et al. Biogeographic patterns and drivers of soil viromes. Nat. Ecol. Evol. 8, 717–728 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).

  • Guo, X., Liu, H. & Zhang, J. The role of biochar in organic waste composting and soil improvement: a review. Waste Manag. 102, 884–899 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campanhola, C. & Pandey, S. (eds) Sustainable Food and Agriculture (Academic Press, 2019).

  • Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brink, C. et al. in The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (eds Sutton, M. A. et al.) 513–540 (Cambridge Univ. Press, 2011).

  • Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M. & Middelburg, J. J. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance. Geosci. Model Dev. 8, 4045–4067 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article 
    ADS 

    Google Scholar 

  • WorldPop Dataset (WorldPop, 2020); https://www.worldpop.org/

  • Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Agnolucci, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).

    Article 
    ADS 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L. et al. Global rules for translating land-use change (LUH2) to land-cover change for CMIP6 using GLM2. Geosci. Model Dev. 13, 3203–3220 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiang, T., Su, B. & Wang, Y. National and provincial population and economy projection databases under Shared Socioeconomic Pathways (SSP1–5)_v2. Science Data Bank (2024).

  • Swart, N. C. et al. Amon_CanESM5 _r1i1p1f1: CMIP6 Monthly Data for Surface Air Temperature and Precipitation (Canadian Centre for Climate Modelling and Analysis, accessed 15 October 2023); https://aims2.llnl.gov/search

  • Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zalasiewicz, J., Williams, M., Steffen, W. & Crutzen, P. The new world of the Anthropocene. Environ. Sci. Technol. 44, 2228–2231 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

    Article 
    PubMed 

    Google Scholar 

  • He, L. & Rosa, L. Solutions to agricultural green water scarcity under climate change. PNAS Nexus 2, pgad117 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klimont, Z. & Winiwarter, W. Integrated Ammonia AbatementModelling of Emission Control Potentials and Costs in GAINS. IIASA Interim Report IR-11-027 (IIASA, 2011).

  • Beach, R. H. et al. Global mitigation potential and costs of reducing agricultural non-CO2 greenhouse gas emissions through 2030. J. Integr. Environ. Sci. 12, 87–105 (2015).

    Article 

    Google Scholar 

  • Sobota, D. J. et al. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).

    Article 
    ADS 

    Google Scholar 

  • Giannadaki, D., Giannakis, E., Pozzer, A. & Lelieveld, J. Estimating health and economic benefits of reductions in air pollution from agriculture. Sci. Total Environ. 622–623, 1304–1316 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Chen, Q. et al. Research on the evaluation method of the ecosystem services of Earth’s critical zone. J. Nanjing Univ. Nat. Sci. 58, 1070–1086 (2022).

    Google Scholar 

  • Yue, D., Wang, L., Geng, R., Wang, Q. & Dai, Y. Initial assessment of seaweed farming ecological value in coastal waters of China. J. Agric. Sci. Technol. 16, 126–133 (2014).

    Google Scholar 

  • Strefler, J. et al. Alternative carbon price trajectories can avoid excessive carbon removal. Nat. Commun. 12, 2264 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, X. et al. A global dataset of soil total phosphorus concentration in (semi-)natural terrestrial ecosystems. figshare (2021).

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

  • Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

  • Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

  • Tang, F. H. M. et al. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *