November 8, 2025
The prevention of adult cardiovascular disease must begin in childhood: evidence and imperative
  • Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics System, Mortality 2018-2023 on CDC WONDER Online Database, released in 2024. Data are from the Multiple Cause of Death Files, 2018-2023, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. wonder.cdc.gov (accessed 18 June 2025).

  • Ikomi, C. & Baker-Smith, C. M. Where a child lives matters: neighborhood deprivation and pediatric obesity. Curr. Opin. Pediatr. 36, 3–9 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Barry, M. J. et al. Screening for lipid disorders in children and adolescents: US preventive services task force recommendation statement. JAMA 330, 253–260 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Krist, A. H. et al. Screening for high blood pressure in children and adolescents: US preventive services task force recommendation statement. JAMA 324, 1878–1883 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490a (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128, S213–S156 (2011).

    Article 
    PubMed Central 

    Google Scholar 

  • Third Report of the National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106, 3143–3421 (2002).

    Article 

    Google Scholar 

  • Gooding, H. C. et al. Application of pediatric and adult guidelines for treatment of lipid levels among US adolescents transitioning to young adulthood. JAMA Pediatr. 169, 569–574 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 139, e1082–e1143 (2019).

    PubMed 

    Google Scholar 

  • Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koskinen, J. et al. Impact of lipid measurements in youth in addition to conventional clinic-based risk factors on predicting preclinical atherosclerosis in adulthood: international childhood cardiovascular cohort consortium. Circulation 137, 1246–1255 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Jacobs, D. R. Jr. et al. Childhood cardiovascular risk factors and adult cardiovascular events. N. Engl. J. Med. 386, 1877–1888 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kartiosuo, N. et al. Cardiovascular risk factors in childhood and adulthood and cardiovascular disease in middle age. JAMA Netw. Open 7, e2418148 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, Y. et al. Blood pressure at different life stages over the early life course and intima-media thickness. JAMA Pediatr. 178, 133–141 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Meng, Y. et al. Relative contribution of blood pressure in childhood, young- and mid-adulthood to large artery stiffness in mid-adulthood. J. Am. Heart Assoc. 11, e024394 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiegman, A. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 292, 331–337 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Ferranti, S. D. et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation 139, e603–e634 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hanssen, H. et al. Lifestyle interventions to change trajectories of obesity-related cardiovascular risk from childhood onset to manifestation in adulthood: a joint scientific statement of the Task Force for Childhood Health of the European Association of Preventive Cardiology and the European Childhood Obesity Group. Eur. J. Prev. Cardiol. 30, 1462–1472 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Niinikoski, H. et al. Effect of repeated dietary counseling on serum lipoproteins from infancy to adulthood. Pediatrics 129, e704–e713 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hampl, S. E. et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics 151, e2022060640 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Obarzanek, E. et al. Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the Dietary Intervention Study in Children (DISC). Pediatrics 107, 256–264 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dorgan, J. F. et al. Adolescent diet and metabolic syndrome in young women: results of the Dietary Intervention Study in Children (DISC) follow-up study. J. Clin. Endocrinol. Metab. 96, E1999–E2008 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niinikoski, H. et al. Blood pressure is lower in children and adolescents with a low-saturated-fat diet since infancy: the Special Turku Coronary Risk Factor Intervention Project. Hypertension 53, 918–924 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vos, M. B. et al. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation 135, e1017–e1034 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raitakari, O. T. et al. Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults. The Cardiovascular Risk in Young Finns study. Am. J. Epidemiol. 140, 195–205 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • García-Hermoso, A., Ramírez-Vélez, R. & Saavedra, J. M. Exercise, health outcomes, and pædiatric obesity: a systematic review of meta-analyses. J. Sci. Med. Sport 22, 76–84 (2019).

    Article 
    PubMed 

    Google Scholar 

  • García-Hermoso, A., González-Ruiz, K., Triana-Reina, H. R., Olloquequi, J. & Ramírez-Vélez, R. Effects of exercise on carotid arterial wall thickness in obese pediatric populations: a meta-analysis of randomized controlled trials. Child Obes. 13, 138–145 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Cataldo, R., John, J., Chandran, L., Pati, S. & Shroyer, A. L. Impact of physical activity intervention programs on self-efficacy in youths: a systematic review. ISRN Obes. 2013, 586497 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • National Center for Chronic Disease Prevention, Health Promotion (US) Office on Smoking and Health. Reports of the Surgeon General. The Health Consequences of Smoking — 50 Years of Progress: A Report of the Surgeon General (Centers for Disease Control and Prevention, 2014).

  • Khoury, M. et al. Reported electronic cigarette use among adolescents in the Niagara region of Ontario. CMAJ 188, 794–800 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedman, A. S. & Xu, S. Associations of flavored e-cigarette uptake with subsequent smoking initiation and cessation. JAMA Netw. Open 3, e203826 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oosterhoff, M., Joore, M. & Ferreira, I. The effects of school-based lifestyle interventions on body mass index and blood pressure: a multivariate multilevel meta-analysis of randomized controlled trials. Obes. Rev. 17, 1131–1153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perry, C. L. et al. School-based cardiovascular health promotion: the child and adolescent trial for cardiovascular health (CATCH). J. Sch. Health 60, 406–413 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eloranta, A. M. et al. Dietary factors associated with metabolic risk score in Finnish children aged 6-8 years: the PANIC study. Eur. J. Nutr. 53, 1431–1439 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Santos-Beneit, G. et al. School-based cardiovascular health promotion in adolescents: a cluster randomized clinical trial. JAMA Cardiol. 8, 816–824 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Resaland, G. K. et al. The effect of a two-year school-based daily physical activity intervention on a clustered CVD risk factor score — the Sogndal school-intervention study. Scand. J. Med. Sci. Sports 28, 1027–1035 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reed, K. E., Warburton, D. E., Macdonald, H. M., Naylor, P. J. & McKay, H. A. Action schools! BC: a school-based physical activity intervention designed to decrease cardiovascular disease risk factors in children. Prev. Med. 46, 525–531 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Voerman, E. et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: an individual participant data meta-analysis. PLoS Med. 16, e1002744 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Covington, L., Armstrong, B., Trude, A. C. B. & Black, M. M. Longitudinal associations among diet quality, physical activity and sleep onset consistency with body mass index z-score among toddlers in low-income families. Ann. Behav. Med. 55, 653–664 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Potvin Kent, M., Pauzé, E., Roy, E. A., de Billy, N. & Czoli, C. Children and adolescents’ exposure to food and beverage marketing in social media apps. Pediatr. Obes. 14, e12508 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramachandran, J. et al. Measures of neighborhood opportunity and adherence to recommended pediatric primary care. JAMA Netw. Open 6, e2330784 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ortiz-Whittingham, L. R. et al. Associations between neighborhood socioeconomic deprivation, IFNγ, and high-density lipoprotein particle size: data from the Washington, D.C. cardiovascular health and needs assessment. Psychoneuroendocrinology 157, 106346 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker-Smith, C. M. et al. Association of area deprivation with primary hypertension diagnosis among youth medicaid recipients in Delaware. JAMA Netw. Open 6, e233012 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, J. et al. The impact of PM2. 5 on the growth curves of children’s obesity indexes: a prospective cohort study. Front. Public Health 10, 843622 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Javed, Z. et al. Race, racism, and cardiovascular health: applying a social determinants of health framework to racial/ethnic disparities in cardiovascular disease. Circ. Cardiovasc. Qual. Outcomes 15, e007917 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. & Wang, Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation 117, 3171–3180 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoury, M. & Urbina, E. M. Cardiac and vascular target organ damage in pediatric hypertension. Front. Pediatr. 6, 148 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flynn, J. T. et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140, e20171904 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lurbe, E. et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 34, 1887–1920 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, P. et al. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 173, 1154–1163 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, M. L., Gunn, P. W. & Kaelber, D. C. Underdiagnosis of hypertension in children and adolescents. JAMA 298, 874–879 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiolero, A., Cachat, F., Burnier, M., Paccaud, F. & Bovet, P. Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J. Hypertens. 25, 2209–2217 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaelber, D. C. et al. Diagnosis and medication treatment of pediatric hypertension: a retrospective cohort study. Pediatrics 138, e20162195 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McEvoy, J. W. et al. 2024 ESC guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 45, 3912–4018 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Flynn, J. T. et al. Ambulatory blood pressure monitoring in children and adolescents: 2022 update: a scientific statement from the American Heart Association. Hypertension 79, e114–e124 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urbina, E. M. et al. Relation of blood pressure in childhood to self-reported hypertension in adulthood. Hypertension 73, 1224–1230 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tracy, R. E. et al. Histologic features of atherosclerosis and hypertension from autopsies of young individuals in a defined geographic population: the Bogalusa Heart Study. Atherosclerosis 116, 163–179 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Homma, S. et al. Histopathological modifications of early atherosclerotic lesions by risk factors — findings in PDAY subjects. Atherosclerosis 156, 389–399 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Juhola, J. et al. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the International Childhood Cardiovascular Cohort Consortium. Circulation 128, 217–224 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ayer, J. G. et al. HDL-cholesterol, blood pressure, and asymmetric dimethylarginine are significantly associated with arterial wall thickness in children. Arterioscler. Thromb. Vasc. Biol. 29, 943–949 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khoury, M., Khoury, P. R., Dolan, L. M., Kimball, T. R. & Urbina, E. M. Clinical implications of the revised AAP pediatric hypertension guidelines. Pediatrics 142, e20180245 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lurbe, E. et al. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension 60, 550–555 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aatola, H. et al. Influence of child and adult elevated blood pressure on adult arterial stiffness: the Cardiovascular Risk in Young Finns study. Hypertension 70, 531–536 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aggoun, Y. et al. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure. Eur. Heart J. 29, 792–799 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Sorof, J. M., Alexandrov, A. V., Cardwell, G. & Portman, R. J. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics 111, 61–66 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Urbina, E. M. et al. Relationship between elevated arterial stiffness and increased left ventricular mass in adolescents and young adults. J. Pediatr. 158, 715–721 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanevold, C. et al. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics 113, 328–333 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Chung, J. et al. Risk of target organ damage in children with primary ambulatory hypertension: a systematic review and meta-analysis. Hypertension 80, 1183–1196 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Childhood adiposity as a predictor of cardiac mass in adulthood: the Bogalusa heart study. Circulation 110, 3488–3492 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Tran, A. H. et al. Subclinical systolic and diastolic dysfunction is evident in youth with elevated blood pressure. Hypertension 75, 1551–1556 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Daniels, S. R., Loggie, J. M., Khoury, P. & Kimball, T. R. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation 97, 1907–1911 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verdecchia, P. et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J. Am. Coll. Cardiol. 38, 1829–1835 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urbina, E. M. et al. Association of blood pressure level with left ventricular mass in adolescents. Hypertension 74, 590–596 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheung, C. Y.-L., Ikram, M. K., Sabanayagam, C. & Wong, T. Y. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 60, 1094–1103 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hauser, C. et al. Bivariate relation of vascular health and blood pressure progression during childhood. Atherosclerosis 381, 117215 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Y. et al. International Childhood Cardiovascular Cohort Consortium I. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa Heart Study. Circ. Res. 126, 633–643 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L., Magnussen, C. G., Yang, L., Bovet, P. & Xi, B. Elevated blood pressure in childhood or adolescence and cardiovascular outcomes in adulthood: a systematic review. Hypertension 75, 948–955 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, H. S., Froberg, K., Hyldebrandt, N. & Nielsen, J. R. A controlled study of eight months of physical training and reduction of blood pressure in children: the Odense Schoolchild study. BMJ 303, 682–685 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, L. et al. Effect of childhood obesity prevention programs on blood pressure. Circulation 129, 1832–1839 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wells, T. G. et al. Safety, efficacy, and pharmacokinetics of telmisartan in pediatric patients with hypertension. Clin. Pediatr. 49, 938–946 (2010).

    Article 

    Google Scholar 

  • Flynn, J. T. et al. Efficacy and safety of the angiotensin receptor blocker valsartan in children with hypertension aged 1 to 5 years. Hypertension 52, 222–228 (2018).

    Article 

    Google Scholar 

  • Schaefer, F. et al. Efficacy and safety of valsartan compared to enalapril in hypertensive children: a 12-week, randomized, double-blind, parallel-group study. J. Hypertens. 29, 2484–2490 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seeman, T. et al. Regression of left-ventricular hypertrophy in children and adolescents with hypertension during ramipril monotherapy. Am. J. Hypertens. 20, 990–996 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kupferman, J. C. et al. Improvement of left ventricular mass with antihypertensive therapy in children with hypertension. Pediatr. Nephrol. 25, 1513–1518 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Devereux, R. B. et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 292, 2350–2356 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soliman, E. Z. et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension: the Systolic Blood Pressure Intervention (SPRINT) trial. Circulation 135, 440–450 (2017).

    Article 

    Google Scholar 

  • Verdecchia, P. et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet 374, 525–533 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Lonn, E. et al. Effects of ramipril on left ventricular mass and function in cardiovascular patients with controlled blood pressure and with preserved left ventricular ejection fraction: a substudy of the Heart Outcomes Prevention Evaluation (HOPE) trial. J. Am. Coll. Cardiol. 43, 2200–2206 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, X., Srinivasan, S. R., Webber, L. S., Wattigney, W. A. & Berenson, G. S. Association of fasting insulin level with serum lipid and lipoprotein levels in children, adolescents, and young adults: the Bogalusa Heart Study. Arch. Intern. Med. 155, 190–196 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGill, H. C. Jr. et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler. Thromb. Vasc. Biol. 20, 1998–2004 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Juonala, M. et al. Associations of dyslipidemias from childhood to adulthood with carotid intima-media thickness, elasticity, and brachial flow-mediated dilatation in adulthood: the cardiovascular risk in young Finns study. Arterioscler. Thromb. Vasc. Biol. 28, 1012–1017 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frontini, M. G. et al. Usefulness of childhood non-high density lipoprotein cholesterol levels versus other lipoprotein measures in predicting adult subclinical atherosclerosis: the Bogalusa Heart Study. Pediatrics 121, 924–929 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Bays, H. E. et al. Obesity, dyslipidemia, and cardiovascular disease: a joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J. Clin. Lipidol. 18, e320–e350 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Knuiman, J. T., West, C. E., Katan, M. B. & Hautvast, J. G. Total cholesterol and high density lipoprotein cholesterol levels in populations differing in fat and carbohydrate intake. Arteriosclerosis 7, 612–619 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perak, A. M. et al. Trends in levels of lipids and apolipoprotein B in US youths aged 6 to 19 years, 1999-2016. JAMA 321, 1895–1905 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riaño-Galán, I. et al. Proatherogenic lipid profile in early childhood: association with weight status at 4 years and parental obesity. J. Pediatr. 187, 153–157 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Dai, S. et al. Non-high-density lipoprotein cholesterol: distribution and prevalence of high serum levels in children and adolescents: United States National Health and Nutrition Examination Surveys, 2005-2010. J. Pediatr. 164, 47–253 (2014).

    Article 

    Google Scholar 

  • Magnussen, C. G. et al. Factors affecting the stability of blood lipid and lipoprotein levels from youth to adulthood: evidence from the Childhood Determinants of Adult Health study. Arch. Pediatr. Adolesc. Med. 165, 68–76 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Stanesby, O. et al. Tracking of serum lipid levels from childhood to adulthood: systematic review and meta-analysis. Atherosclerosis 391, 117482 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gidding, S. S. et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 132, 2167–2192 (2015).

    Article 
    PubMed 

    Google Scholar 

  • de Ferranti, S. D. et al. Prevalence of familial hypercholesterolemia in the 1999 to 2012 United States National Health and Nutrition Examination Surveys (NHANES). Circulation 33, 1067–1072 (2016).

    Article 

    Google Scholar 

  • Moorjani, S. et al. Homozygous familial hypercholesterolemia among French Canadians in Quebec province. Arteriosclerosis 9, 211–216 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwiterovich, P. O. Jr. Recognition and management of dyslipidemia in children and adolescents. J. Clin. Endocrinol. Metab. 93, 4200–4209 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • National Heart, Lung, and Blood Institute. Integrated guidelines for cardiovascular health and risk reduction in children and adolescents: full report. nhlbi.nih.gov (2011).

  • Ruel, I. et al. Simplified Canadian definition for familial hypercholesterolemia. Can. J. Cardiol. 34, 1210–1214 (2018).

    PubMed 

    Google Scholar 

  • Buscot, M. J. et al. The combined effect of common genetic risk variants on circulating lipoproteins is evident in childhood: a longitudinal analysis of the cardiovascular risk in Young Finns Study. PLoS ONE 11, e0146081 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stone, N. J., Levy, R. I., Fredrickson, D. S. & Verter, J. Coronary artery disease in 116 kindred with familial type II hyperlipoproteinemia. Circulation 49, 476–488 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoury, M. et al. Pediatric lipid screening and treatment in Canada: practices, attitudes, and barriers. Can. J. Cardiol. 36, 1545–1549 (2020).

    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Familial hypercholesterolemia variant and cardiovascular risk in individuals with elevated cholesterol. JAMA Cardiol. 9, 263–271 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Defesche, J. C. et al. Familial hypercholesterolaemia. Nat. Rev. Dis. Prim. 3, 17093 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Khoury, M. et al. The detection, evaluation, and management of dyslipidemia in children and adolescents: a Canadian Cardiovascular Society/Canadian Pediatric Cardiology Association clinical practice update. Can. J. Cardiol. 38, 1168–1179 (2022).

    PubMed 

    Google Scholar 

  • Wald, D. S. & Bestwick, J. P. Reaching detection targets in familial hypercholesterolaemia: comparison of identification strategies. Atherosclerosis 293, 57–61 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wald, D. S. et al. Child-parent familial hypercholesterolemia screening in primary care. N. Engl. J. Med. 375, 1628–1637 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stein, E. A. et al. Efficacy and safety of lovastatin in adolescent males with heterozygous familial hypercholesterolemia: a randomized controlled trial. JAMA 281, 137–144 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Jongh, S. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized, double-blind, placebo-controlled trial with simvastatin. Circulation 106, 2231–2237 (2002).

    Article 
    PubMed 

    Google Scholar 

  • McCrindle, B. W., Ose, L. & Marais, A. D. Efficacy and safety of atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: a multicenter, randomized, placebo-controlled trial. J. Pediatr. 143, 74–80 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodenburg, J. et al. Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation 116, 664–668 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Jongh, S. et al. Early statin therapy restores endothelial function in children with familial hypercholesterolemia. J. Am. Coll. Cardiol. 40, 2117–2121 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Braamskamp, M. et al. Effect of rosuvastatin on carotid intima-media thickness in children with heterozygous familial hypercholesterolemia: the CHARON study (hypercholesterolemia in children and adolescents taking rosuvastatin open label). Circulation 136, 359–366 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vuorio, A. et al. Statins for children with familial hypercholesterolemia. Cochrane Database Syst. Rev. 2019, CD006401 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoury, M. & McCrindle, B. W. The rationale, indications, safety, and use of statins in the pediatric population. Can. J. Cardiol. 36, 1372–1383 (2020).

    PubMed 

    Google Scholar 

  • Wu, F. et al. Childhood non-HDL cholesterol and LDL cholesterol and adult atherosclerotic cardiovascular events. Circulation 149, 217–226 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reyes-Soffer, G. et al. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e48–e60 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, D. P., Koschinsky, M. L. & Moriarty, P. M. Expert position statements: comparison of recommendations for the care of adults and youth with elevated lipoprotein(a). Curr. Opin. Endocrinol. Diabetes Obes. 28, 159–173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation 139, 1483–1492 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Raitakari, O. et al. Lipoprotein(a) in youth and prediction of major cardiovascular outcomes in adulthood. Circulation 147, 23–31 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alonso, R. et al. Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J. Am. Coll. Cardiol. 63, 1982–1989 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Skinner, A. C., Ravanbakht, S. N., Skelton, J. A., Perrin, E. M. & Armstrong, S. C. Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics 141, e20173459 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ndumele, C. E. et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation 148, 1606–1635 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Janssen, I. et al. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes. Rev. 6, 123–132 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Afshin, A. et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Freedman, D. S., Mei, Z., Srinivasan, S. R., Berenson, G. S. & Dietz, W. H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J. Pediatr. 150, 12–17.e2 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Nielsen, J., Hulman, A., Narayan, K. M. V. & Cunningham, S. A. Body mass index trajectories from childhood to adulthood and age at onset of overweight and obesity: the influence of parents’ weight status. Am. J. Epidemiol. 191, 1877–1885 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buscot, M. J. et al. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur. Heart J. 39, 2263–2270 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Buscot, M. J. et al. Longitudinal association of a body mass index (BMI) genetic risk score with growth and BMI changes across the life course: the Cardiovascular Risk in Young Finns study. Int. J. Obes. 44, 1733–1742 (2020).

    Article 
    CAS 

    Google Scholar 

  • Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zieske, A. W., Malcom, G. T. & Strong, J. P. Natural history and risk factors of atherosclerosis in children and youth: the PDAY study. Pediatr. Pathol. Mol. Med. 21, 213–237 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Sinaiko, A. R., Donahue, R. P., Jacobs, D. R. Jr. & Prineas, R. J. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children’s Blood Pressure study. Circulation 99, 1471–1476 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. et al. Weight change from childhood to adulthood and cardiovascular risk factors and outcomes in adulthood: a systematic review of the literature. Obes. Rev. 22, e13138 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Genovesi, S. et al. Association between lifestyle modifications and improvement of early cardiac damage in children and adolescents with excess weight and/or high blood pressure. Pediatr. Nephrol. 38, 4069–4082 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Epstein, L. H., Kuller, L. H., Wing, R. R., Valoski, A. & McCurley, J. The effect of weight control on lipid changes in obese children. Am. J. Dis. Child. 143, 454–457 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Ippisch, H. M. et al. Reversibility of cardiac abnormalities in morbidly obese adolescents. J. Am. Coll. Cardiol. 51, 1342–1348 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Bruyndonckx, L. et al. Diet, exercise, and endothelial function in obese adolescents. Pediatrics 135, e653–e661 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weghuber, D. et al. Once-weekly semaglutide in adolescents with obesity. N. Engl. J. Med. 387, 2245–2257 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayba, N., Rissel, C. & Allman Farinelli, M. Effectiveness of lifestyle interventions in preventing harmful weight gain among adolescents: a systematic review of systematic reviews. Obes. Rev. 22, e13109 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Raitakari, O., Pahkala, K. & Magnussen, C. G. Prevention of atherosclerosis from childhood. Nat. Rev. Cardiol. 19, 543–554 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112, 2735–2752 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Morrison, J. A., Friedman, L. A. & Gray-McGuire, C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton Lipid Research Clinics Follow-up study. Pediatrics 120, 340–345 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Khoury, M. et al. Role of waist measures in characterizing the lipid and blood pressure assessment of adolescents classified by body mass index. Arch. Pediatr. Adolesc. Med. 166, 719–724 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Khoury, M., Manlhiot, C. & McCrindle, B. W. Role of the waist/height ratio in the cardiometabolic risk assessment of children classified by body mass index. J. Am. Coll. Cardiol. 62, 742–751 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Haley, J. et al. A clinical tool to relate youth risk factors to adult cardiovascular events and type 2 diabetes: the International Childhood Cardiovascular Cohort Consortium. J. Pediatr. 276, 114277 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Campbell, M. D. et al. Impact of ideal cardiovascular health in childhood on the retinal microvasculature in midadulthood: Cardiovascular Risk in Young Finns study. J. Am. Heart Assoc. 7, e009487 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Divers, J. et al. Trends in incidence of type 1 and type 2 diabetes among youths — selected counties and Indian reservations, United States, 2002-2015. MMWR Morbidity Mortal. Wkly. Rep. 69, 161–165 (2020).

    Article 

    Google Scholar 

  • de Ferranti, S. D. et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 37, 2843–2863 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Bjornstad, P., Cherney, D. & Maahs, D. M. Early diabetic nephropathy in type 1 diabetes: new insights. Curr. Opin. Endocrinol. Diabetes Obes. 21, 279–286 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guy, J. et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for diabetes in youth case-control study. Diabetes Care. 32, 416–420 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panagiotopoulos, C., Hadjiyannakis, S., Henderson, M. & Diabetes Canada Clinical Practice Guidelines Expert Committee. Type 2 diabetes in children and adolescents. Can. J. Diabetes 42 (Suppl. 1), S247–S254 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Meigs, J. B., Cupples, L. A. & Wilson, P. W. Parental transmission of type 2 diabetes: the Framingham Offspring study. Diabetes 49, 2201–2207 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, S. B., Bhattacharyya, O., Dyck, R., Hayward, M. N., Toth, E. L. & Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Type 2 diabetes in Aboriginal peoples. Can. J. Diabetes 37 (Suppl. 1), S191–S196 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Shah, A. S. et al. ISPAD clinical practice consensus guidelines 2022: type 2 diabetes in children and adolescents. Pediatr. Diabetes 23, 872–902 (2002).

    Article 

    Google Scholar 

  • Sellers, E. A., Yung, G. & Dean, H. J. Dyslipidemia and other cardiovascular risk factors in a Canadian First Nation pediatric population with type 2 diabetes mellitus. Pediatr. Diabetes 8, 384–390 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Halpern, A. et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol. Metab. Syndr. 2, 55 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Einarson, T. R., Acs, A., Ludwig, C. & Panton, U. H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc. Diabetol. 17, 83 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selvin, E. et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 141, 421–431 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanssen, H. Vascular biomarkers in the prevention of childhood cardiovascular risk: from concept to clinical implementation. Front. Cardiovasc. Med. 9, 935810 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christian, S., Ridsdale, R., Lin, M. & Khoury, M. Evaluating the prevalence of lipid assessments in children in Alberta, Canada. CMAJ Open 11, E820–E825 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perak, A. M. et al. Toward a roadmap for best practices in pediatric preventive cardiology: a science advisory from the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 16, e000120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agency for Healthcare Research and Quality. Hospital Inpatient and Outpatient Use, Cost, and Quality. ahrq.gov (2025).

  • Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. Trends in lipids and lipoproteins in US adults, 1988-2010. JAMA 308, 1545–1554 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *