November 8, 2025
Cardiovascular disease prevention in China: challenges and opportunities in the artificial intelligence-enabled digital health era
  • Mensah, G. A., Fuster, V., Murray, C. J. L. & Roth, G. A. Global burden of cardiovascular diseases and risks, 1990-2022. J. Am. Coll. Cardiol. 82, 2350–2473 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H., Yin, P., Qi, J. & Zhou, M. Burden of non-communicable diseases in China and its provinces, 1990-2021: results from the Global Burden of Disease Study 2021. Chin. Med. J. 137, 2325–2333 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GBD 2017 Risk Factor Collaborators Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994 (2018).

    Article 

    Google Scholar 

  • Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 395, 795–808 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chinese Center for Disease Control and Prevention. China national plan for NCD prevention and treatment (2012–2015). China CDC (2012).

  • Tan, X., Zhang, Y. & Shao, H. Healthy China 2030, a breakthrough for improving health. Glob. Health Promot. 26, 96–99 (2019).

    Article 
    PubMed 

    Google Scholar 

  • The State Council. State Council measures to enhance people’s fitness, health. english.gov.cn (2019).

  • Shengshou Hu, J. Y. The strategy for cardiovascular disease prevention and control in China in the new era. Chinese Circ. J. 37 (2022).

  • Meder, B., Asselbergs, F. W. & Ashley, E. Artificial intelligence to improve cardiovascular population health. Eur. Heart J. 46, 1907–1916 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beatty, A. L. et al. A new era in cardiac rehabilitation delivery: research gaps, questions, strategies, and priorities. Circulation 147, 254–266 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, F. et al. Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. Chin. Med. J. 136, 1015–1025 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Armoundas, A. A. et al. Use of artificial intelligence in improving outcomes in heart disease: a scientific statement from the American Heart Association. Circulation 149, e1028–e1050 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Health Commission. Notice of the reference guide for artificial intelligence application scenarios in the health industry. NHC (2024).

  • Institute for Health Metrics and Evaluation. GBD results. IHME (2021).

  • Wang, R. et al. Forecasting cardiovascular disease risk and burden in China from 2020 to 2030: a simulation study based on a nationwide cohort. Heart 111, 205–211 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Mendis, S. & Graham, I. Prevention and control of cardiovascular disease in “real-world” settings: sustainable implementation of effective policies. Front. Cardiovasc. Med. 11, 1380809 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GBD 2015 Healthcare Access and Quality Collaborators Healthcare access and quality index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990-2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet 390, 231–266 (2017).

    Article 

    Google Scholar 

  • Zhou, M. et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet 394, 1145–1158 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Bureau of Statistics of China. China Health Statistical Yearbook 2023 [Chinese] (China Statistics Press, 2024).

  • Zhou, Y. et al. Universal health coverage in China: a serial national cross-sectional study of surveys from 2003 to 2018. Lancet Public. Health 12, e1051–e1063 (2022).

    Article 

    Google Scholar 

  • Mao, F. et al. Geographic variation in cardiovascular health as analyzed from the China cardiovascular health index study – 31 PLADs, China, 2017-2021. China CDC Wkly. 4, 265–270 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Mortality and years of life lost of cardiovascular diseases in China, 2005-2020: empirical evidence from national mortality surveillance system. Int. J. Cardiol. 340, 105–112 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gao, Y., Su, J., Wei, Z., Liu, J.-L. & Wang, J. Characteristics of out-of-hospital acute coronary heart disease deaths of Beijing permanent residents at the age of 25 or more from 2007-2009 [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 40, 199–203 (2012).

    PubMed 

    Google Scholar 

  • Wang, W. et al. Trends and associated factors in place of death among individuals with cardiovascular disease in China, 2008-2020: a population-based study. Lancet Reg. Health-W. Pac. 21, 100383 (2022).

    Google Scholar 

  • Hua, W. et al. Incidence of sudden cardiac death in China: analysis of 4 regional populations. J. Am. Coll. Cardiol. 54, 1110–1118 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, J. et al. Incidence, process of care, and outcomes of out-of-hospital cardiac arrest in China: a prospective study of the BASIC-OHCA registry. Lancet Public. Health 8, e923–e932 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, M., Zhao, Y. & Tian, S. Atherosclerotic cardiovascular risk stratification of acute myocardial infarction patients in China. Chin. Circulation J. 36, 852 (2021).

    Google Scholar 

  • Yuan, J. et al. Age and geographic disparities in acute ischaemic stroke prehospital delays in China: a cross-sectional study using national stroke registry data. Lancet Reg. Health-W. Pac. 33, 100693 (2023).

    Google Scholar 

  • Hu, D. et al. Pre-hospital delay in patients with acute myocardial infarction in China: findings from the Improving Care for Cardiovascular Disease in China–Acute Coronary Syndrome (CCC-ACS) project. J. Geriatr. Cardiol. 19, 276–283 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Z. & Liangmin, G. The social ladder and cultural choice of medicalization of death: a analysis for place of death in a city of Yunnan province, 2009-2014. Soc. Sci. Beijing 1, 86–93 (2018).

    Google Scholar 

  • Zhou, M. & Yang, G. Progress in research for associated factors of place of death [Chinese]. Chin. J. Prev. Med. 43, 535–537 (2009).

    Google Scholar 

  • Ferdinand, K. C. Primordial prevention of cardiovascular disease in childhood: the time is now. J. Am. Coll. Cardiol. 73, 2022–2024 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schuermans, A. & Lewandowski, A. J. Childhood risk factors and adult cardiovascular events. N. Engl. J. Med. 387, 473 (2022).

    PubMed 

    Google Scholar 

  • Zou, X. et al. Adversities in childhood and young adulthood and incident cardiovascular diseases: a prospective cohort study. EClinicalMedicine 69, 102458 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayman, L. L., Braun, L. T. & Muchira, J. M. A life course approach to cardiovascular disease prevention. J. Cardiovasc. Nurs. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, Y. et al. Status of cardiovascular health in Chinese children and adolescents: a cross-sectional study in China. JACC Asia 2, 87–100 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, W. et al. Validation of “Life’s Essential 8” metrics with cardiovascular structural status in children: the PROC study in China. J. Am. Heart Assoc. 12, e029077 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, X. et al. Trends and inequalities in thinness and obesity among Chinese children and adolescents: evidence from seven national school surveys between 1985 and 2019. Lancet Public. Health 9, e1025–e1036 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, C. et al. Determinants of childhood obesity in China. Lancet Public. Health 9, e1105–e1114 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Chinese Society of Cardiology, Chinese Medical Association et al. Chinese guideline on the primary prevention of cardiovascular diseases in primary health care. Zhonghua Xin Xue Guan Bing Za Zhi 51, 1–21 (2023).

    Google Scholar 

  • Zhao, Y. et al. Provincial heterogeneity in the management of care cascade for hypertension, diabetes, and dyslipidaemia in China: analysis of nationally representative population-based survey. Front. Cardiovasc. Med. 9, 923249 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z., Ma, L., Liu, M., Fan, J. & Hu, S. Summary of the 2022 Report on Cardiovascular Health and Diseases in China. Chin. Med. J. 136, 2899–2908 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J., Zhang, Z., Si, S., Wang, B. & Xue, F. Antihypertensive medication adherence and cardiovascular disease risk: a longitudinal cohort study. Atherosclerosis 320, 24–30 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ni, Z., Dardas, L., Wu, B. & Shaw, R. Cardioprotective medication adherence among patients with coronary heart disease in China: a systematic review. Heart Asia 11, e011173 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dolan, H. et al. ‘Every medicine is part poison’: a qualitative inquiry into the perceptions and experiences of choosing contraceptive methods of migrant Chinese women living in Australia. BMC Women’s Health 21, 100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Center for Cardiovascular Diseases the Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2023: an updated summary. Biomed. Environ. Sci. 37, 949–992 (2024).

    PubMed 

    Google Scholar 

  • Su, M. et al. Availability, cost, and prescription patterns of antihypertensive medications in primary health care in China: a nationwide cross-sectional survey. Lancet 390, 2559–2568 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Li, X. et al. Quality of primary health care in China: challenges and recommendations. Lancet 395, 1802–1812 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, Y. et al. Performance of management strategies with class I recommendations among patients hospitalized with ST-segment elevation myocardial infarction in China. JAMA Cardiol. 7, 484–491 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. China stroke statistics: an update on the 2019 report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke Vasc. Neurol. 7, 415–450 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Center for Cardiovascular Disease Medical Quality Control. 2024 National Report on Healthcare Service Delivery and Quality and Safety in China (Peking Union Medical College Press, 2024).

  • World Health Organization. Global strategy on digital health 2020-2025. WHO (2021).

  • Institute of Medical Information, Chinese Academy of Medical Sciences. 2024 Report on the Development of Internet Hospitals in China (Social Sciences Academic Press, 2024).

  • Yang, M. et al. The status and challenges of online consultation service in internet hospitals operated by physical hospitals in China: a large-scale pooled analysis of multicenter data. BMC Health Serv. Res. 25, 611 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, X. et al. Internet hospitals in China: cross-sectional survey. J. Med. Internet Res. 19, e239 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, C. Zhejiang leads way with AI health assistant. CHINADAILY.COM.CN (2024).

  • Tuckson, R. V., Edmunds, M. & Hodgkins, M. L. Telehealth. N. Engl. J. Med. 377, 1585–1592 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Xiao, Y., Chen, T., Zhou, Y. & Zhu, S. Challenges in establishing a strong telemedicine system in China. Postgrad. Med. J. 99, 1–3 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Schwalbe, N. & Wahl, B. Artificial intelligence and the future of global health. Lancet 395, 1579–1586 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramezani, M. et al. The application of artificial intelligence in health financing: a scoping review. Cost Effect. Resour. Alloc. 21, 83 (2023).

    Article 

    Google Scholar 

  • Wu, H., Lu, X. & Wang, H. The application of artificial intelligence in health care resource allocation before and during the COVID-19 pandemic: scoping review. JMIR AI 2, e38397 (2023).

    Article 

    Google Scholar 

  • Awasthi, S. et al. Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG. EClinicalMedicine 65, 102259 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yijing, L. et al. Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring. Comput. Methods Prog. Biomed. 214, 106568 (2022).

    Article 

    Google Scholar 

  • Kolk, M. Z. H. et al. Machine learning of electrophysiological signals for the prediction of ventricular arrhythmias: systematic review and examination of heterogeneity between studies. EBioMedicine 89, 104462 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, L. et al. Feasibility of remote monitoring for fatal coronary heart disease using Apple watch ECGs. Cardiovasc. Digit. Health J. 5, 115–121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiu, I. M. et al. Serum potassium monitoring using AI-enabled smartwatch electrocardiograms. JACC Clin. Electrophysiol. 10, 2644–2654 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Hasumi, E. et al. Heart failure monitoring with a single-lead electrocardiogram at home. Int. J. Cardiol. 432, 133203 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Lin, C. et al. AI-enabled electrocardiography alert intervention and all-cause mortality: a pragmatic randomized clinical trial. Nat. Med. 30, 1461–1470 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mase, A. et al. Non-contact and real-time measurement of heart rate and heart rate variability using microwave reflectometry. Rev. Sci. Instrum. 91, 14704 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Y. et al. Atrial fibrillation detection via contactless radio monitoring and knowledge transfer. Nat. Commun. 16, 4317 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y. et al. A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology. Sci. Rep. 8, 13053 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, S. et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit. Care 24, 61 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, F., Zhang, Y. & Chen, Y. Cardiopulmonary resuscitation training in China: current situation and future development. JAMA Cardiol. 2, 469–470 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lei, H., Yumeng, W. & Wenlei, W. Prevention and control of cardiac arrest in healthy China. China CDC Weekly 3, 304–307 (2021).

    Article 

    Google Scholar 

  • Aqel, S. et al. Artificial intelligence and machine learning applications in sudden cardiac arrest prediction and management: a comprehensive review. Curr. Cardiol. Rep. 25, 1391–1396 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, T. et al. Development of artificial intelligence-driven biosignal-sensitive cardiopulmonary resuscitation robot. Resuscitation 202, 110354 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Semeraro, F. et al. Cardiac arrest and cardiopulmonary resuscitation in the next decade: predicting and shaping the impact of technological innovations. Resuscitation 200, 110250 (2024).

    Article 
    PubMed 

    Google Scholar 

  • He, Z. & Niu, X. in Proceedings of the 2nd International Conference on Information Science and Education (ICISE-IE) 1577–1581 (IEEE, 2021).

  • China Daily. Shanghai makes strides in offering quality early childhood education. International Services Shanghai (2025).

  • China Children and Teenagers’ Fund. AI smart sports entering campuses, empowering physical education. CCTF (2023).

  • Fang, Y. et al. Methodology of an exercise intervention program using social incentives and gamification for obese children. BMC Public. Health 19, 686 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folkvord, F., Haga, G. & Theben, A. The effect of a serious health game on children’s eating behavior: cluster-randomized controlled trial. JMIR Serious Games 9, e23050 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kato-Lin, Y. et al. Impact of pediatric mobile game play on healthy eating behavior: randomized controlled trial. JMIR mHealth uHealth 8, e15717 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Metzendorf, M., Wieland, L. S. & Richter, B. Mobile health (m-health) smartphone interventions for adolescents and adults with overweight or obesity. Cochrane Database Syst. Rev. 2, CD013591 (2024).

    PubMed 

    Google Scholar 

  • Widmer, R. J. et al. Digital health interventions for the prevention of cardiovascular disease: a systematic review and meta-analysis. Mayo. Clin. Proc. 90, 469–480 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Palmer, M. J. et al. Mobile phone-based interventions for improving adherence to medication prescribed for the primary prevention of cardiovascular disease in adults. Cochrane Database Syst. Rev. 3, CD012675 (2021).

    PubMed 

    Google Scholar 

  • Khoong, E. C. et al. Mobile health strategies for blood pressure self-management in urban populations with digital barriers: systematic review and meta-analyses. NPJ Digit. Med. 4, 114 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blok, S. et al. Success factors in high-effect, low-cost eHealth programs for patients with hypertension: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 28, 1579–1587 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Katz, M. E. et al. Digital health interventions for hypertension management in US populations experiencing health disparities: a systematic review and meta-analysis. JAMA Netw. Open. 7, e2356070 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siopis, G. et al. Effectiveness, reach, uptake, and feasibility of digital health interventions for adults with hypertension: a systematic review and meta-analysis of randomised controlled trials. Lancet Digit. Health 5, e144–e159 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuan, P. X. et al. Efficacy of telemedicine for the management of cardiovascular disease: a systematic review and meta-analysis. Lancet Digit. Health 4, e676–e691 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, X. et al. Interactive mobile health intervention and blood pressure management in adults. Hypertension 74, 697–704 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mueller, S. et al. Telemedicine-supported lifestyle intervention for glycemic control in patients with CHD and T2DM: multicenter, randomized controlled trial. Nat. Med. 31, 1203–1213 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomes et al. Teleconsultation on patients with type 2 diabetes in the Brazilian public health system: a randomized, pragmatic, open-label, phase 2, non-inferiority trial (TELECONSULTA diabetes trial). Lancet Reg. Health Am. 39, 100923 (2024).

    Google Scholar 

  • World Health Organization. Classification of digital interventions, services and applications in health: a shared language to describe the uses of digital technology for health, second edition. WHO (2023).

  • Jain, S. S. et al. Artificial intelligence in cardiovascular care — part 2: applications: JACC review topic of the week. J. Am. Coll. Cardiol. 83, 2487–2496 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sermesant, M., Delingette, H., Cochet, H., Jais, P. & Ayache, N. Applications of artificial intelligence in cardiovascular imaging. Nat. Rev. Cardiol. 18, 600–609 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Follmer, B. et al. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat. Rev. Cardiol. 21, 51–64 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Ji, M., Chen, X., Genchev, G. Z., Wei, M. & Yu, G. Status of AI-enabled clinical decision support systems implementations in China. Methods Inf. Med. 60, 123–132 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Y. J. et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 30, 1471–1480 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, M. et al. Telemedicine-based integrated management of atrial fibrillation in village clinics: a cluster randomized trial. Nat. Med. 31, 1276–1285 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, J. et al. Learning implementation of a guideline based decision support system to improve hypertension treatment in primary care in China: pragmatic cluster randomised controlled trial. BMJ 386, e079143 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Rationale and design of the GOLDEN BRIDGE II: a cluster-randomised multifaceted intervention trial of an artificial intelligence-based cerebrovascular disease clinical decision support system to improve stroke outcomes and care quality in China. Stroke Vasc. Neurol. 9, 723–729 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Current status and challenges in prenatal and neonatal screening, diagnosis, and management of congenital heart disease in China. Lancet Child. Adolesc. Health 7, 479–489 (2023).

    Article 
    PubMed 

    Google Scholar 

  • An, S. et al. Fetal heart and descending aorta detection in four-chamber view of fetal echocardiography. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2722–2725 (2021).

    PubMed 

    Google Scholar 

  • Gong, Y. et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning. IEEE Trans. Med. Imaging 39, 1206–1222 (2020).

    Article 
    PubMed 

    Google Scholar 

  • National Center for Quality Control of Diseases of the Cardiovascular System. 2024 national health service and quality and safety report – cardiovascular disease fascicle. (Peking Union Medical College Press, 2025).

  • Cardiovascular Disease Quality Initiative (CDQI) program. (2025).

  • Bartusik-Aebisher, D., Rogóż, K. & Aebisher, D. Artificial intelligence and ECG:a new frontier in cardiac diagnostics and prevention. Biomedicines 13, 1685 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *